PHYS 690C: Homework, set \#2

due date: Mar. 13th in my mailbox.
exercise 1: The Fermilab 8 GeV proton booster is part of the Tevatron complex. Its parameters are as follows ${ }^{1}$: injection momentum $c p_{i n j}=400 \mathrm{MeV}$, maximum momentum $c p_{\max }=8.9 \mathrm{GeV}$, harmonic number $h \equiv \frac{1}{2 \pi} \omega T_{s}=84$ (ω is the rffrequency and T_{s}, the revolution period of the synchronous particle), peak rf-voltage $V=200 \mathrm{kV}$, transition "energy" $\gamma_{t}=5.4$, and rf-frequency at maximum momentum $f_{r f}=52.8 \mathrm{MHz}$.

1. Calculate the synchrotron oscillation frequency.
2. What are the injection and maximum energies, $E_{i n j}$ and $E_{\max }$ corresponding respectively to $p_{i n j}$ and $p_{\max }$?
3. Calculate and plot the rf and synchrotron oscillation frequency as a function of momentum p with $p_{i n j}<p<p_{\max }$.
4. what is the energy acceptance $\Delta E_{\max }$ at injection and maximum energy?
5. How long does the acceleration last?
exercise 2: Consider the synchrotron motion of a particle inside the separatrix for a stationary rf bucket.
6. Derive an expression for the frequency of the synchrotron oscillation as a function of $\Delta \phi_{0}$, the maximum excursion of the synchrotron phase.
7. Compute the oscillation frequencies in function of the small amplitude synchrotron frequency.
exercise 3: Consider the transformation of a non-relativistic particle through an accelerating gap:

$$
\begin{aligned}
W_{f} & =W_{i}+q V T(k) \cos \phi_{i} \\
\phi_{f} & =\phi_{i}
\end{aligned}
$$

[^0]wherein W_{i}, W_{f} are respectively the initial and final particle's energies, q the particle's charge, $T(k)$ the transit time factor ${ }^{2}$, V the accelerating voltage and $k \equiv \omega /(\beta c)$.

1. Show that the Jacobian of the transformation is not unity.
2. Discuss how to change the above transformation to make the Jacobian unity up to a second order term in $q V /\left(W_{i}\right)$. In particular consider the introduction of a phase jump $\phi_{f}=\phi_{i}+C$. Give a possible value for C. This problem was first recognized in the 1960's by Lapostolle and Prome ${ }^{3}$. [hint: note that the second term on the rhs of W_{f} depends on energy via k; you can introduce $\left.T^{\prime}=(d T) /(d k).\right]$
exercise 4: Consider a traveling wave accelerating structure. The axial electric field is of the form

$$
\begin{equation*}
E_{z}(z, t)=E_{o} \sin \left(\omega t-k z+\psi_{o}\right) \tag{1}
\end{equation*}
$$

where E_{0} is the peak field, k the rf wavenumber and ψ_{0} the injection phase of the particle with respect to the rf wave. Let $\psi(z, t) \equiv \omega t-k z+\psi_{o}$ be the relative phase of the electron w.r.t the wave.

1. Derive the system of coupled first order ODE that describes the longitudinal motion of a particle moving along z in a linear accelerator experiencing the electric field $E_{z}(z, t)$. You will use γ, ψ as"phase space" variables.
2. Solve for ψ as a function of γ; you need to introduce ψ_{0} and γ_{0} the initial conditions. Assume the incoming beam is relativistics.
3. Find an expression for the asymptotic value of the phase $\psi_{\infty} \equiv \lim _{\gamma \rightarrow \infty} \psi(\gamma)$ as a function of the initial injection phase.
4. Compute the compression ratio $\mathcal{C} \equiv \frac{\partial \psi_{\infty}}{\partial \psi_{0}}$ and discuss the physical meaning of \mathcal{C}.
[^1]
[^0]: ${ }^{1}$ I use the notations of Lecture Notes pg. Long.13; for precise definitions you can also look at http://doc.cern.ch/yellowrep/1994/94-01/p289.pdf

[^1]: ${ }^{2}$ see Lecture Notes pg. Long 3
 ${ }^{3}$ see for instance P. M. Lapostolle, "Proton Linear accelerator: A theoretical and historical introduction", report LA-11601-MS July 1989 available from Los Alamos National Lab.

