PHYS 690C: Homework, set \#1

due date: Feb 24th in my mailbox.

exercise 1: By analogy with the "ABCD" matrix formalism in photonic optics, the trace-space coordinates of a particle at a given location (1), are transformed, at a downstream location (2), following: $\vec{X}^{(2)}=M^{1 \rightarrow 2} \vec{X}^{(1)}$. Here $\left.\vec{X} \equiv \widetilde{\left(x, x^{\prime}\right.}\right)$ (as in the Notes $" \sim$ " stands for the transpose operator), and $M^{1 \rightarrow 2}$ is the transfer matrix between points (1) and (2) in the trace space $\left(x, x^{\prime}\right)$ associated to the transformation. We consider the transformation matrix associated to a free-space drift D and a thin focusing lens F to be:

$$
D=\left[\begin{array}{cc}
1 & L \tag{1}\\
0 & 1
\end{array}\right], \text { and, } F=\left[\begin{array}{cc}
1 & 0 \\
\kappa & 1
\end{array}\right]
$$

wherein L is the drift length and κ the focusing strength of the lens. We consider a beam with initial beam matrix Σ_{0} that passes through the lens and then the drift. Let Σ_{F} be the final beam matrix.

1. Find the final beam matrix Σ_{F} and write it as a function of the beam's initial moments.
2. Deduce an expression for the final squared rms beam size of the beam $\left(\left\langle x^{2}\right\rangle\right)$.
3. Explain how a measurement of the final squared rms beam size as a function of the lens strength yields the initial beam matrix elements (and initial beam emittance).
exercise 2: Consider a beam experiencing a force of the form $F_{x} \propto x$ so that the transverse momentum becomes $p_{x} \rightarrow p_{x}+\mu x$ where μ is a real scalar. Show that such a force does not change the value of the statistical rms emittance.
exercise 3: Properties of the trace-space ellipse. Consider the trace space ellipse with equation $\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\tilde{\varepsilon}$. The parameters α, β and γ are the so-called Twiss parameters, they are related by $\gamma=\frac{1+\alpha^{2}}{\beta}$.
4. Derive the values of $x_{R M S}, x_{R M S}^{\prime}, x_{I N T}$ and $x_{I N T}^{\prime}$ defined in Fig. ?? as a function of the Twiss parameters.
5. What is the value of the slope defined as $m \equiv \tan (\phi)$?
6. Consider the shearing transformation $x^{\prime} \rightarrow \hat{x}^{\prime}=x^{\prime}+m^{\prime} x$ what is the required value for m^{\prime} in order to generate a statistically uncorrelated distribution in $\left(x, x^{\prime}\right)$ space (i.e. meaning $\left\langle x \hat{x}^{\prime}\right\rangle=0$).
7. By identification of m and m^{\prime}, find the expression of α as a function of the beam's second order moments.
8. A shearing transformation does not change the beam's emittance (see exercise 2). By using the results of the previous questions retrieve the statistical emittance definition in the trace-space: $\tilde{\varepsilon}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}$.

Figure 1: figure of exercise 3.
exercise 4: Show that for a charge distribution that is a uniform ellipsoid in x, y, and z, the second order centered moments are $1 / 5$ of the maximum values.

