Review of Star Intro

- Parallax geometric method of determining star distance
- Absolute and apparent luminosity.
- Temperature
- Spectrum: What characterizes the star's surface
 - Is related to its **temperature**
 - Can use spectral information to determine masses of binary stars..
 - Can use spectral information to determine
 absolute luminosity, then use the apparent
 luminosity to determine distance

Shifting Star Positions

- The orbit of the earth is used as the base.
- Near stars appear to move more than far stars
- Distance = (base length)/angle
- Define: 1 parsec = 1 AU/(angle of 1 second of arc) =
 3.3 LY
 1 sec arc = 1 deg/3600

PARallax of one arc SECond

= 1 rad/206,265

Absolute vs Apparent Brightness

Absolute Brightness/Luminosity means total energy output Apparent Brightness is what is seen by eye or in a telescope and so depends on distance (1/Distance²)

Binary Star Systems

- Many stars come in groups of 2 or 3 that are close (few AU) to each other: BINARY Star Systems
- Gravitationally bound and probably formed at the same time
- SiriusA is 23 times as bright as our Sun SiriusB is 0.005 times as bright as the Sun Their separation varies from 8 to 31 AU

Binary Stars → Stellar Masses

- →Visual Binary: If can visually observe **both** stars
- → Spectroscopic Binary: If one can only separate into 2 stars by looking at the spectrum (they eclipse each other plus wil have different Doppler shifts)
- →Measure the orbital information like period and separation distance. Get Mass though Kepler/ Newtonian-like methods

Binary Star Orbits - Eclipses

Binary Star Orbits – Doppler Shifts

PHYSICS 162 Lecture 7a

Stellar Sizes

- For a few close, big stars, they can be seen in a telescope as non-point objects
- Measure angular size; if one knows the distance, can get the actual size of star
 Example: Betelgeuse 300 times larger radius than the Sun
- If further away but a **binary star**, then can get size of stars when they eclipse each other → length of time one star passes in front or behind each other

Stellar Sizes

Mass vs Luminosity

always on these plots it is the Absolute Luminosity of the star

High mass → High brightness

Surface Temperature of Stars

- Continuous spectrum and the peak wavelength tells temperature lambda(max) = constant/Temp where lambda=wavelength
- OR measure relative intensity at a few wavelengths like
 - RED
 - GREEN

BLUE

 \rightarrow Easy to do

In order to explain the frequency distribution of radiation from a hot cavity, Planck proposed the **ad hoc** assumption that the radiant energy could exist only in **discrete quanta** which were proportional to the frequency. In which case, higher modes would be less populated and avoid the "ultraviolet catastrophe".

Wien's Displacement Law

When the temperature of a **blackbody radiator increases**, the overall **radiated energy increases** and the **peak** of the radiation curve moves to **shorter** wavelengths.

The product of the peak wavelength and the temperature is found to
be a constant.PHYSICS 162 Lecture 7a13

HST image. "add" together images taken with different color filters

Spectral Classes

Light passing through a star's atmosphere gives dark line **absorption** spectrum. Tells:

- What atoms are present
- Motion of the star by the Doppler shift of the absorption lines
- Temperature of the photosphere by **relative intensity** of different absorption lines and by amounts of different molecules and ions

Quantum Mechanical Model of H Atom

Balmer Lines in the Spectrum of a Star

This portion of the spectrum of the star Vega shows eight Balmer lines, from H_{α} at 656.3 nm through H_{θ} at 388.9 nm.

Spectrum of Sun

The combination of lines from the solar spectrum allows us to determine which chemicals are present and in what abundance...

Stellar Spectroscopy

Spectral classes **originally** ordered A,B,G,M... based on the amount of hydrogen, helium, ionized calcium and metals. absorption in the visible range...

Now order by surface temperature ۲ (Cecilia Payne applied Quantum Mechanics). Trace Spectral Class Temperature hottest oh () be B Don't need to Α a 3900 4000 4100 4200 4300 4400 fine F know 1910s: Annie Jump Cannon and others working at Harvard girl/guy G developed an empirical scheme for kiss Κ classifying the spectra coolest Μ me

Hertzprung-Russell Diagram

Plot Luminosity versus surface temperature

Hertzprung-Russell Diagram

Stars with larger sizes are brighter then a smaller star with the same surface temperature

Temperature vs Luminosity vs Radius of Stars

- Energy emitted by surface of star due to EM radiation is Energy/(surface area) = σT^4 . Examples:
- Two stars. Same temperature and radius → same Luminosity
- Two stars. Same temperature. Radius(B) = 2xRadius(A).
 So surface area(B)= 4xsurface area(A) →
 Luminosity(B)= 4xLum(A)

Temperature vs Luminosity vs Radius of Stars

- Energy emitted by surface of star due to EM radiation is Energy/(surface area) = σT^4 . Examples:
- Two stars. Same radius. Temperature(B) = 2xTemp(A). (Energy/Area)_B = 2⁴ X (Energy/Area)_A ~ or ~ (Energy/Area)_B = 16 X (Energy/Area)B
 → Luminosity(B) = 16 X Lum(A)

Hertzprung-Russell Diagram

• Most stars are on a "line" called the MAIN SEQUENCE with

hot surface temp <-> large radius

medium temp <-> medium radius

cool surface temp <-> small radius

- There are also stars with cool surface temperature but very large radius: RED GIANTS
- Stars with hot surface temperature but very small radius: WHITE DWARVES

Key Properties of Main Sequence Stars

. . .

Mass/ <i>M</i> Sun	Luminosity/L _{Sun}	Effective Temperature (K)	Radius/R _{Sun}	Main sequence lifespan (yrs)
0.10	3×10 ⁻³	2,900	0.16	2×10 ¹²
0.50	0.03	3,800	0.6	2×10 ¹¹
0.75	0.3	5,000	0.8	3×10 ¹⁰
1.0	1	6,000	1.0	1×10 ¹⁰
1.5	5	7,000	1.4	2×10 ⁹
3	60	11,000	2.5	2×10 ⁸
5	600	17,000	3.8	7×10 ⁷
10	10,000	22,000	5.6	2×10 ⁷
15	17,000	28,000	6.8	1×10 ⁷
25	80,000	35,000	8.7	7×10 ⁶
60	790,000	44,500	15	3.4×10 ⁶

Spectroscopic Parallax

- If we use well-understood close stars to determine the overall brightness scale of a specific class of star, then measuring the spectrum can be used to give the distance for stars > 500 LY away
- 1. Determine Surface Temperature + spectral class of star
- 2. Determine where on HR diagram should go
- 3. Read off absolute luminosity from HR diagram
- 4. Measure apparent luminosity and calculate distance
- works best if many close-by stars

