Review of Star Intro

- Parallax - geometric method of determining star distance
- Absolute and apparent luminosity.
- Temperature
- Spectrum: What characterizes the star's surface
- Is related to its temperature
- Can use spectral information to determine masses of binary stars..
- Can use spectral information to determine absolute luminosity, then use the apparent luminosity to determine distance

Shifting Star Positions

- The orbit of the earth is used as the base.
- Near stars appear to move more than far stars
- Distance $=($ base length $) /$ angle
- Define: 1 parsec $=1 \mathrm{AU} /($ angle of 1 second of arc $)=$ 3.3 LY $1 \mathrm{sec} \operatorname{arc}=1 \mathrm{deg} / 3600$ PARallax of one arc SECond $=1 \mathrm{rad} / 206,265$

Absolute vs Apparent Brightness

Absolute Brightness/Luminosity means total energy output Apparent Brightness is what is seen by eye or in a telescope and so depends on distance (1/Distance ${ }^{2}$)

PHYS 162

Binary Star Systems

- Many stars come in groups of 2 or 3 that are close (few AU) to each other: BINARY Star Systems
- Gravitationally bound and probably formed at the same time
- SiriusA is 23 times as bright as our Sun SiriusB is 0.005 times as bright as the Sun Their separation varies from 8 to 31 AU

Binary Stars \rightarrow Stellar Masses

\rightarrow Visual Binary: If can visually observe both stars
\rightarrow Spectroscopic Binary: If one can only separate into 2 stars by looking at the spectrum (they eclipse each other plus wil have different Doppler shifts)
\rightarrow Measure the orbital information like period and separation distance. Get Mass though Kepler/ Newtonian-like methods

Binary Star Orbits - Eclipses

Binary Star Orbits - Doppler Shifts

Stellar Sizes

- For a few close, big stars, they can be seen in a telescope as non-point objects
- Measure angular size; if one knows the distance, can get the actual size of star
Example: Betelgeuse 300 times larger radius than the Sun
- If further away but a binary star, then can get size of stars when they eclipse each other \rightarrow length of time one star passes in front or behind each other

Stellar Sizes

Mass vs Luminosity

 always on these plots it is the Absolute Luminosity of the starHigh mass \rightarrow
High brightness

Surface Temperature of Stars

- Continuous spectrum and the peak wavelength tells temperature
lambda $(\max)=$ constant/Temp
where lambda=wavelength
- OR measure relative intensity at a few wavelengths like

RED
GREEN
BLUE
\rightarrow Easy to do

More on "Blackbody" Radiation

In order to explain the frequency distribution of radiation from a hot cavity, Planck proposed the ad hoc assumption that the radiant energy could exist only in discrete quanta which were proportional to the frequency. In which case, higher modes would be less populated and avoid the "ultraviolet catastrophe".

Wien's Displacement Law

When the temperature of a blackbody radiator increases, the overall radiated energy increases and the peak of the radiation curve moves to shorter wavelengths.

The product of the peak wavelength and the temperature is found to be a constant.

HST image. "add" together images taken with different color filters

Spectral Classes

Light passing through a star's atmosphere gives dark line absorption spectrum. Tells:

- What atoms are present
- Motion of the star by the Doppler shift of the absorption lines
- Temperature of the photosphere by relative intensity of different absorption lines and by amounts of different molecules and ions

Quantum Mechanical Model of H Atom

Shorter wavelength

This portion of the spectrum of the star Vega shows eight Balmer lines, from H_{α} at 656.3 nm through H_{θ} at 388.9 nm .

Spectrum of Sun

Spectrum of Sun

The combination of lines from the solar spectrum allows us to determine which chemicals are present and in what abundance...

Spectral Classes

\rightarrow Energy is enough to be "excited", but not ionized \leftarrow

Stellar Spectroscopy

Spectral classes originally ordered A,B,G,M... based on the amount of hydrogen, helium, ionized calcium and metals. absorption in the visible range...

- Now order by surface temperature
- (Cecilia Payne applied Quantum

Mechanics).

Spectral Class
O oh
B be
A a
F fine
G girl/guy
K kiss
M me

Temperature hottest

Don't need to

 know

1910s: Annie Jump Cannon and others working at Harvard developed an empirical scheme for classifying the spectra
\longleftarrow Surface temperature (K)

\section*{Hertzprung

Russell Diagram

}
Russell Diagram

}
Plot Luminosity versus surface temperature

HertzprungRussell Diagram

Stars with larger sizes are brighter then a smaller star with the same surface temperature

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is
Energy/(surface area) $=\sigma T^{4}$. Examples:

- Two stars. Same temperature and radius \rightarrow same Luminosity
- Two stars. Same temperature. Radius(B) $=2 x$ Radius(A).

So surface $\operatorname{area}(B)=4 x$ surface $\operatorname{area}(A)$
\rightarrow
$\operatorname{Luminosity}(B)=4 x \operatorname{Lum}(A)$

Radius $=1$

Radius $=2$

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is
Energy/(surface area) $=\sigma \mathrm{T}^{4}$. Examples:

- Two stars. Same radius. Temperature $(B)=2 x T e m p(A)$.
$(\text { Energy } / \text { Area })_{B}=2^{4} \mathrm{X}(\text { Energy } / \text { Area })_{A} \sim$ or \sim
$(\text { Energy } / \text { Area })_{B}=16 \mathrm{X}($ Energy $/$ Area $) \mathrm{B}$
\rightarrow Luminosity $(\mathrm{B})=16 \mathrm{X} \operatorname{Lum}(\mathrm{A})$

Temp $=6000$

$$
\text { Temp }=12,000
$$

Hertzprung-Russell Diagram

- Most stars are on a "line" called the MAIN SEQUENCE with
hot surface temp <-> large radius medium temp <-> medium radius cool surface temp <-> small radius
- There are also stars with cool surface temperature but very large radius: RED GIANTS
- Stars with hot surface temperature but very small radius: WHITE DWARVES

Key Properties of Main Sequence Stars

Mass/MSun	Luminosity/LSun	Effective Temperature (K)	Radius/RSun	Main sequence lifespan (yrs)
0.10	3×10^{-3}	2,900	0.16	2×10^{12}
0.50	0.03	3,800	0.6	2×10^{11}
0.75	0.3	5,000	0.8	3×10^{10}
1.0	1	6,000	1.0	1×10^{10}
1.5	5	7,000	1.4	2×10^{9}
3	60	11,000	2.5	2×10^{8}
5	600	17,000	3.8	7×10^{7}
10	10,000	22,000	5.6	2×10^{7}
15	17,000	28,000	6.8	1×10^{7}
25	80,000	35,000	8.7	7×10^{6}
60	790,000	44,500	15	3.4×10^{6}

Spectroscopic Parallax

- If we use well-understood close stars to determine the overall brightness scale of a specific class of star, then measuring the spectrum can be used to give the distance for stars > 500 LY away

1. Determine Surface Temperature + spectral class of star
2. Determine where on HR diagram should go
3. Read off absolute luminosity from HR diagram
4. Measure apparent luminosity and calculate distance

- works best if many close-by stars

