The Nature of Stars

- Measure properties of Stars

Distance
Mass
Absolute Brightness
Surface Temperature
Radius

- Find that some are related

Large Mass \rightarrow Large Brightness

- Determine model of stellar formation and life cycle

Distances to Stars

- Important as determines actual brightness but hard to measure as stars are so far away

Closest Alpha Centauri

$$
4.3 \text { light years }=4 \times 10^{13} \mathrm{~km}
$$

($1 \mathrm{AU}=$ distance Earth to Sun $=8$ light minutes)

- Close stars use stellar parallax (heliocentric parallax or triangulation \rightarrow same meaning)
- Can "easily" measure distance using parallax to a few 100 LY. Need telescope: first observed in 1838. Study close stars in detail. Other techniques for distant stars

Distances to Stars - Parallax

a Parallax of a nearby star

b Parallax of an even closer star

Shifting Star Positions

- The orbit of the earth is used as the base.
- Near stars appear to move more than far stars
- Distance $=($ base length $) /$ angle
- Define: 1 parsec $=1 \mathrm{AU} /($ angle of 1 second of arc $)=$ 3.3 LY $1 \mathrm{sec} \operatorname{arc}=1 \mathrm{deg} / 3600$ PARallax of one arc SECond $=1 \mathrm{rad} / 206,265$

Stellar Parallax

- A photo of the stars will show the shift.

January
July

Nearest Stars

61 Cygni
first
parallax
in 1838
www.cosmobrain.com 1999 - All Rights

\#	Name / Ident.	T.Par.	Dist.pc	Dist. ly
1	Proxima Centauri	0,770	1,30	4,24
2	Alpha Centauri A	0,750	1,33	4,35
3	Alpha Centauri B	0,750	1,33	4,35
	Barnard's Star	0,546	1,83	5,98
5	5 Wolf 359	0,419	2,39	7,78
	$\begin{aligned} & \text { Lalande } \\ & 21185 \end{aligned}$	0,395	2,53	8,26
7	7 Sirius A	0,382	2,62	8,55
8	Sirius B	0,382	2,62	8,55
	Luyten $726-8 \mathrm{~A}$	0,374	2,68	8,73
10	$\begin{aligned} & \text { Luyten } \\ & \text { 726-8B (UV } \\ & \text { Ceti) } \end{aligned}$	0,374	2,68	8,73
11	Ross 154	0,345	2,90	9,45

Nearest Stars

-The larger the angle (T.Par. = trigonometric parallax) the closer the star

- many stars come in groups like the 2 stars in the Sirius "binary cluster" \rightarrow close together, within same "solar system"
-Alpha Centauri and Procyon are close binary systems

Parallax Data

- In 1900 only 60 stars had parallax measurements
- 1997-2000 a European satellite Hipparcos released parallax measurements for more than 2,300,000 stars up to 500 LY distance
- 118,000 stars measured with .001 arc-second resolution and 0.2% error on light intensity
- OLD(1990): 100 stars with distance known to 5%. "NEW" (2005): 7000 such stars
- ESA Gaia satellite: 20130.00001 arc-second. Goal: measure 1 billion objects ~ 70 times each over 5 years

Luminosity of Stars

- Luminosity=Absolute Brightness=how much light/energy a star produces
- Scale relative to Sun. So
$\mathrm{L}_{\text {sirius }}=23 \mathrm{~L}_{\mathrm{S}}$ means Sirius radiates 23 times more energy than the Sun
- Stars range from $.0001 \mathrm{xL}_{\mathrm{S}}$ to $1,000,000 \mathrm{xL}_{\mathrm{S}}$

Another scale: "magnitude" often used. A log scale to the power of ~ 2.5. YOU DON'T NEED TO KNOW. The lower the Mag the brighter the object

Absolute vs Apparent Brightness

Absolute Brightness/Luminosity means total energy output Apparent Brightness is what is seen by eye or in a telescope and so depends on distance (1/Distance ${ }^{2}$)

PHYS 162

Absolute vs Apparent Brightness

Example: 2 stars with the same absolute brightness
$\operatorname{Star}(\mathrm{A})$ is 3 times further away from us then $\operatorname{Star}(\mathrm{B})$ therefore the apparent brightness of $\operatorname{Star}(\mathrm{A})$ is $1 / 9$ that of $\operatorname{Star}(B)$

30 LY

Brightness: Sirius vs Rigel

- Sirius is 23 times as bright as our Sun Rigel is 30,000 times as bright as our Sun
- Sirius is 8.6 light years from us

Rigel is 680 light years from us

- Which star looks brighter in the sky? Has the larger apparent luminosity? \rightarrow Sirius

$$
\begin{aligned}
& \text { Sirius: } \frac{23}{8.6^{2}}=\frac{23}{74}=0.3 \\
& \text { Rigel }:
\end{aligned} \frac{30000}{680^{2}}=\frac{30000}{460000}=0.07
$$

Binary Star Systems

- Many stars come in groups of 2 or 3 that are close (few AU) to each other: BINARY Star Systems
- Gravitationally bound and probably formed at the same time
- SiriusA is 23 times as bright as our Sun SiriusB is 0.005 times as bright as the Sun Their separation varies from 8 to 31 AU

Binary Stars \rightarrow Stellar Masses

\rightarrow Visual Binary. Can see two distinct starts
\rightarrow Spectroscopic Binary
Can only separate into 2 stars by looking at the spectrum
(eclipse each other plus have different Doppler shifts)
-Measure orbital information \rightarrow period and separation distance. Get Mass though Kepler/Newtonian-like methods

Binary Star Orbits - Eclipses

Binary Star Orbits - Doppler Shifts

Stellar Sizes

- For a few close, big stars, they can be seen in a telescope as non-point objects
- Measure angular size; if know distance then get size of star
Example: Betelgeuse 300 times larger radius than the Sun
- If further away but a binary star, get size of stars when they eclipse each other \rightarrow length of time one star passes in front or behind each other

Stellar Sizes

Mass vs

Luminosity

always on these plots it is the Absolute Luminosity of the star

High mass \rightarrow
High brightness

Surface Temperature of Stars

- Continuous spectrum and the peak wavelength tells temperature
lambda(max) $=\mathrm{A} /$ Temp
where lambda=wavelength
- OR measure relative intensity at a few wavelengths like

RED
GREEN
BLUE
\rightarrow Easy to do

HST image. "add" together images taken with different color filters

Spectral Classes

Light passing through a star's atmosphere gives dark line absorption spectrum. Tells:

- What atoms are present
- Motion of the star by the Doppler shift of the absorption lines
- temperature of the photosphere by relative intensity of different absorption lines and by amounts of different molecules and ions

Spectral Classes

Spectral classes originally ordered A,B,C,D... based on the amount of hydrogen absorption in the visible:

- Now order by surface temperature

Spectral Class
O oh
B be
A a
F fine
G girl/guy
K kiss
M me

Temperature hottest

Don't need to
 know

coolest
\longleftarrow Surface temperature (K)

HertzprungRussell Diagram

Plot Luminosity versus surface temperature

HertzprungRussell Diagram

Stars with larger sizes are brighter then a smaller star with the same surface temperature

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is Energy/area $=\sigma T^{4}$. Examples

- Two stars. Same temperature and radius \rightarrow same Luminosity
- Two stars. Same temperature. Radius(B) $=2 x \operatorname{Radius}(A)$. So surface area $(B)=4 x$ surface area (A) \rightarrow
Luminosity $(B)=4 x L u m(A)$

Radius $=1$

$$
\text { radius }=2
$$

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is Energy/area $=\sigma T^{4}$. Examples

- Two stars. Same radius. Temperature $(B)=2 x T e m p(A)$. (Energy/Area)B $=2^{4}($ Energy $/$ Area) A or (Energy/ Area)B = 16x(Energy/Area)B
Luminosity $(\mathrm{B})=16 x \operatorname{Lum}(\mathrm{~A})$

Temp $=6000$

Temp $=12,000$

Hertzprung-Russell Diagram

- Most stars are on a "line" called the MAIN SEQUENCE with
hot surface temp \rightarrow large radius medium temp \rightarrow medium radius cool surface temp \rightarrow small radius
- There are also stars with cool surface temperature but very large radius: RED GIANTS
- Stars with hot surface temperature but very small radius: WHITE DWARVES

Key Properties of Main Sequence Stars

Mass/Msun	Luminosity/Lsun	Effective Temperature (K)	Radius/RSun	Main sequence lifespan (yrs)
0.10	3×10^{-3}	2,900	0.16	2×10^{12}
0.50	0.03	3,800	0.6	2×10^{11}
0.75	0.3	5,000	0.8	3×10^{10}
1.0	1	6,000	1.0	1×10^{10}
1.5	5	7,000	1.4	2×10^{9}
3	60	11,000	2.5	2×10^{8}
5	600	17,000	3.8	7×10^{7}
10	10,000	22,000	5.6	2×10^{7}
15	17,000	28,000	6.8	1×10^{7}
25	80,000	35,000	8.7	7×10^{6}
60	790,000	44,500	15	3.4×10^{6}

Spectroscopic Parallax

- If we use well-understood close stars to determine the overall brightness scale of a specific class of star, then measuring the spectrum can be used to give the distance for stars > 500 LY away

1. Determine Surface Temperature + spectral class of star
2. Determine where on HR diagram should go
3. Read off absolute luminosity from HR diagram
4. Measure apparent luminosity and calculate distance

- works best if many close-by stars

