The Sun

Some Properties

- Diameter 109 times Earth's
- Volume about 1,000,000 times Earth's
- Mass about 300,000 times Earth's 99.8% of Solar System
- Density = Mass/Volume = 1.4 g/cm³
 The Sun is a gas cloud of mostly Hydrogen and Helium

Sun's volume ~1,000,000X larger then Earth and ~1,000X larger then Jupiter

Energy Production in the Sun

Sun produces

- 2 calories/cm²/minute at Earth's surface
- 10¹¹ cal/minute entire Earth's surface
- 10²⁷ calories/minute entire Sun's surface
- Energy produced in the Sun flows out as light (and other EM energy).
- Equivalent energy units:
 - 4 times 10²⁶ Watts
 - 100 billion 1 Megaton Hydrogen bombs every second

Source of Sun's Energy

- Big mystery before 1940
- Chemical Reactions do not give enough energy
- Gravitational energy can produce about 100 million years at the Sun's output but geological evidence shows Earth is billions of years old
- Need nuclear forces and reactions to power Sun. In particular, the strong nuclear force which holds protons and neutrons together

Atom = Nucleus + Electrons

He atom		Proton			4	
size=10 ⁻¹⁰ m		neutron	some common atoms			
	•	electron	#e	#p	#n	
He nucleus size = 10^{-15}	m					
	. .	Hydrogen	1	1	0	
(^{1}U) 1009.	Isotopes	Deseterise	1	1	1	
M(H) = 1.008u	of	Deuterium	I	1	1	
m(n) = 1.009u	hydrogen	Tritium	1	1	2	
$m(^{2}H) = 2.014u$		111010111				
$m(^{4}He) = 4.0026u$		Helium-4	2	2	2	
$m(^{8}Be) = 8.0055u$		Carbon-12	6	6	6	
$m(^{12}C) = 12.00000u$		Carbon-14	6	6	8	
			-	-	~	

Strong Nuclear Force

- Holds protons and neutrons together in a nucleus
- Strongest force. About 20 times stronger than EM force
- Short range only extends a little beyond size of proton (10⁻¹⁵ m)
- Mostly attractive but only affects particles like protons and neutrons. Electrons do not "feel" this force

More on Strong Force

As strong force is attractive:

- 2p + 2n "prefer" being bound together in Helium
- "preference" causes mass of He to be smaller than 2p+2n. The mass difference causes energy to be released
- What nuclei are stable depends on interplay between attractive strong force and repulsive (between protons) EM force. Some are stable H¹, H² C12, and some are not H3, C14 (half lives of 12.3 years and 5730 years)

Weak Nuclear Force

- Affects all particles (except photon)
- Weaker than electromagnetic force except at very high energies where about the same
- Short range size of proton
- Causes changes in particle type. Many radioactive decays are "weak" and so can occur slowly

Neutrinos - little neutral ones

- Postulated to exist in 1930s, discovered in 1950s.
- Neutrinos (v) have:
 - almost 0 mass
 - no electric charge
 - unaffected by strong nuclear force
 - \rightarrow and so only interact through the weak nuclear force
- Only 1/10¹⁰ produced in the Sun's interior interact when going through the Sun's outer layers → so can be used to study Sun's interior

Neutrino Astronomy

- Neutrino observatories can observe neutrinos coming from the Sun, from supernovas, and maybe from black holes
- Most are large water containers deep underground Japan, Canada, US, Russia, Italy, India (movie 2012)
- Some instrument Antarctica ice or Mediterranean water

Mass converts to Energy

Combining 2 protons + 2 neutrons into Helium converts Mass into Energy/Heat → Source of Sun's energy

Nuclear Reactions

- Nuclear reactions provide the source of the Sun's energy.
- The strong nuclear force binds protons and neutrons together. For example, combining 2 protons and 2 neutrons into Helium converts (by E=mc²) a few percent of the initial particles mass into energy (heat). This is called FUSION.
- For heavier nuclei, the repulsive electromagnetic force between the protons causes them to be less stable.
- Iron is the most stable (largest binding energy per nuclei).
- If heavy nuclei (like Uranium) are broken up into light nuclei, energy is release. This is called **FISSION**

Nuclear Reactions Primer

- No free neutrons exist (lifetime is 15 minutes)
- The electric force between protons is repulsive.
 Need high temperatures (at least 5 million degrees
 K) to get nuclei close enough together for the strong force to bind them together
- usually 2 body reactions, as much more probable

Proton-proton cycle 3 steps

14

Proton-proton cycle: Reaction 1

$$p + p \rightarrow (pn) + e^+ + v_e$$

(pn) is a Deuterium nucleus (heavy hydrogen)

- $m({}^{1}H) = 1.008u$ m(n) = 1.009u $m({}^{2}H) = 2.014u$
- e⁺ is a positron. It is the antiparticle of an electron (electrons and positrons can annihilate each other)
- v_e is a neutrino. Basically an electron without any charge. Only feels weak nuclear force
- Reactions releases energy since Mass(D +electron+neutrino) is less than Mass(p+p)
 2.014 + .0005 + 0 < 2.016

p-p cycle Reaction 2

$(pn) + p \rightarrow (ppn) + \gamma$

Where a Deuterium nucleus (pn)
absorbs a proton and becomes
Helium-3 (ppn). The Helium is in an
excited state and emits a photon (γ) as
it moves to the ground state

p-p cycle: Reaction 3

$(ppn) + \{ppn\} \rightarrow (ppnn) + p + p$

Two He-3 nuclei collide. They rearrange particles so that a very stable He-4 nuclei is formed with 2 extra protons left over.

Total p-p cycle

- p+p+p+p+p → (ppnn) + v + v + Energy
 or 6 protons are used to form 1 Helium nucleus plus 2
 neutrinos plus Energy (in the form of the 2 positrons and 2
 protons)
- Sun is converting Hydrogen into Helium
- Sun is converting part of its Mass into Energy.
- In 10 billion years about 1% of Sun's mass is so converted (and then fusion burning stops)
- Fusion rate depends on temperature and density of the core

Summary

- The STRONG NUCLEAR force can cause energy to be released if protons and neutrons are combined
- High temperatures, provided by the GRAVITATIONAL force, is needed to overcome the ELECTROMAGNETIC repulsive force.
- Neutrons must be made from protons by the WEAK NUCLEAR force.
- All 4 forces are necessary for the Sun to produce energy