Review of chapter 2 !!

Core of ancient astronomy: The Universe is comprehensible!

Correct science predicts correct behavior.

Astronomy lead directly to discovery of fundamental laws of nature.

Origins of sun-centered universe.

"common sense" was Earth-centered, but lacked explanation for many observations.

Copernicus' sun-centered system simplified (and unified) explanations for planets. Copernicus' system was not complete – stars did NOT orbit the Sun.

Configurations are relationships between the Earth the other planets and the Sun.

Keplers Laws (elliptical orbit, areas swept, periods**2 = semi-major axis**3)

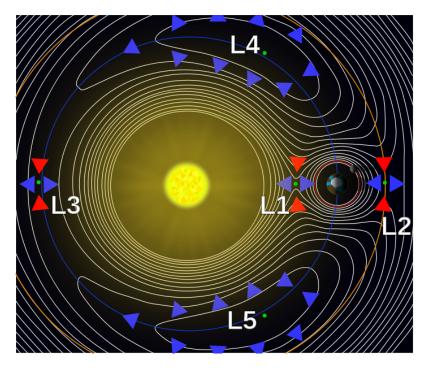
- Newton's Laws explained Kepler's laws and unified "heaven" and earth motion.
- Conservation of Angular Momentum PHYS 162 Lecture 4a

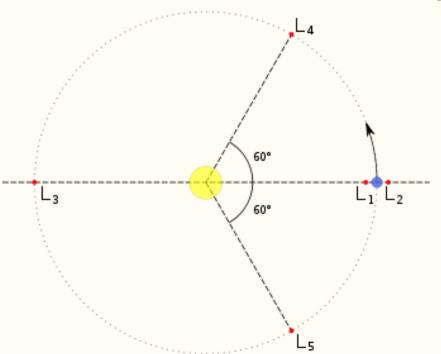
Reviewing physics

The elements of basic mechanics: mass (m), time (t) distance (s,x, y...), speed and velocity v, and acceleration, a. v = dx/dt, a = dv/dt. bold = vector

First year courses in Physics primarily focuses on the action of objects under **constant acceleration**:

a) constant direction linear (gravity) a = dv/dt

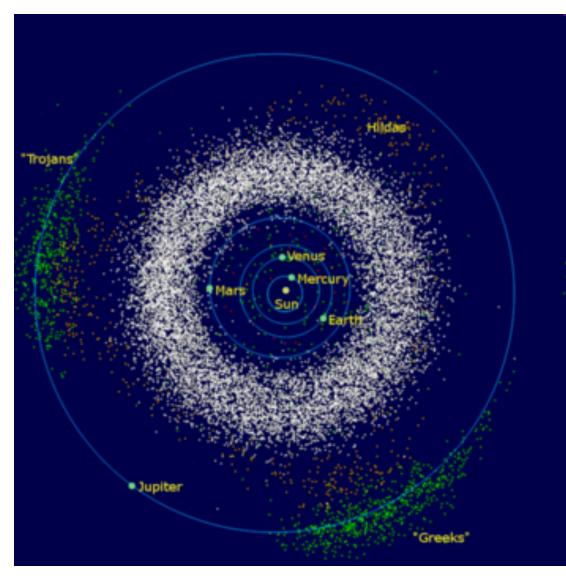

b) constant speed circular motion. $a = v^2/R$


In both these circumstances the force causing the acceleration is expressed as $\mathbf{f} = \mathbf{m}^* \mathbf{a}$ of the object's motion. Weight vs. mass

When the object is still or moving at **constant velocity**, the **net force** on that object is **zero**.

Three and more bodies – Lagrange points

• Five positions in an orbital configuration where a small object affected only by gravity can theoretically be part of a constant-shape pattern with two larger objects



Only two points, L4 and L5 are stable – can capture asteroids

Physics 162 Lecture 3b

Trojan points of Jupiter

One asteroid found at Earth's Trojan point. See 162 webpage

Physics 162 Lecture 3b

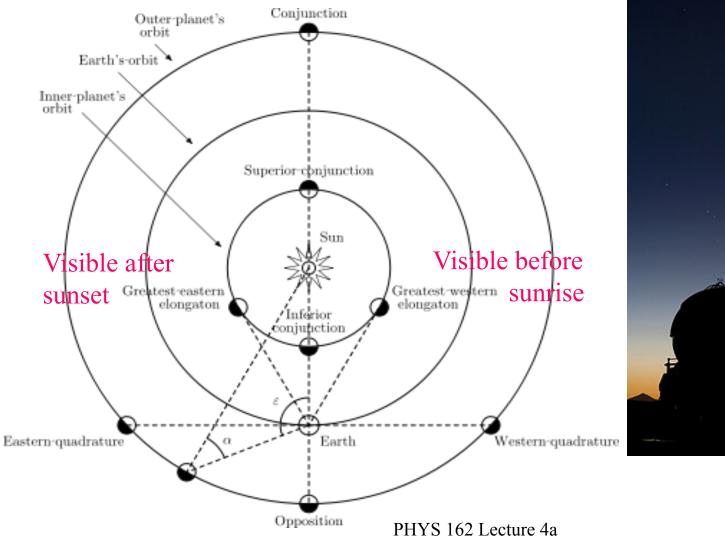
Kepler's Laws

- Kepler's Laws can all be derived from Newton's laws of motion and force of gravity.
- Previous class simplified to circular orbit, but gravity causes elliptical orbits where planet moves faster when closer to the Sun as force of gravity is larger there.
 (Equal areas swept per unit time → conservation of angular momentum).
- Third Law actually

 $D^3 = (Mass(sun) and Mass(earth)) \times P^2$

D=distance from Sun, and P=period

• As mass Sun much larger can mostly ignore mass planet (but Sun does move slightly due to planet's pull)


Physics 162 Lecture 3b

Orbital Periods

- Study orbital periods \rightarrow get masses
 - planets around Sun \rightarrow Sun's mass
 - Jupiter's moons around Jupiter \rightarrow Jupiter's mass
- Also used for stars (more on this later)
 - two nearby stars orbiting each other \rightarrow their masses
 - an exoplanet orbiting a star will cause the star to
 wobble a bit → can give mass of exoplanet
- see some animations at (from wikipedia) http:// nicadd.niu.edu/~macc/162/Center.html

Some Traditional Astronomy Terms

• Elongation and Conjuction

7

Venus probes!

- http://www.spacetoday.org/SolSys/Venus/ VenusMissionsTable.html
- Extreme heat (450 degrees F +)
- Extreme atmospheric pressure.
- Russians dominated... many failures (some firsts)
 - First planetary atmosphere probe, (crushed at an attitude of about 16 miles)
 - First successful planetary landing
 - First pictures of the surface of Venus, 4-month orbital photo study of clouds

Venus probes!

Past Explorations of the Planet Venus

					1.07
LAUNCH	FROM	NAME	INTENTION	RESULT	27
1961 Feb 4	USSR	1VA - 1	impact	Stranded in Earth orbit	1972 Mar 31
1961 Feb 12	USSR	Venera 1	impact	Lost when attitude control sensor overheated	1973 Nov 3
1962 Jul 22	USA	Mariner 1	flyby	Lost and splashed in North Atlantic	1975 Jun 8
1962 Aug 25	USSR	2MV-1 - 1	landing	Stranded in Earth orbit	1975 Jun
1962 Aug 27	USA	Mariner 2	flyby	First successful planetary mission found Venus has small magnetic field	14 1978 May
1962 Sep 1	USSR	2MV-1 - 2	landing	Stranded in Earth orbit	20 1978 Aug
1962 Sep 12	USSR	2MV-2 - 1	photo flyby	Stranded in Earth orbit	8
1964 Mar 27	USSR	3MV-1 - 5	landing	Stranded in Earth orbit	1978 Sep 9
1964 Apr 2	USSR	Zond 1	landing	Pressure loss and corona discharge	1978 Sep 14
1965 Nov 12	USSR	Venera 2	flyby	Thermal control failure	1981 Oct 30
1965 Nov 16	USSR	Venera 3	landing	First impact on another planet. Thermal failure	1981 Nov 4
1965 Nov 23	USSR	3MV-4 - 6	flyby	Exploded in Earth orbit	1983 Jun 2
1967 Jun 12	USSR	Venera 4	landing	First planetary atmosphere probe, crushed at an attitude of about 16 miles	1983 Jun 7
1967 Jun 14	USA	Mariner 5	flyby	Fly-by, radio occultation	1984 Dec 15
1967 Jun 17	USSR	V-67 - 2	landing	Stranded in Earth orbit	1984 Dec
1969 Jan 5	USSR	Venera 5	landing	Successful, crushed at an altitude of about 11 miles	21
1969 Jan 10	USSR	Venera 6	landing	Successful, crushed at an altitude of about 11 miles	1989 May 4
1970 Aug 17	USSR	Venera 7	landing	First successful planetary landing	1989 Oct 18
1970 Aug 22	USSR	V-70 -	landing	Stranded in Earth orbit	1997 Oct 15
1972 Mar	USSR	Venera 8	landing	Measured surface illumination DHVS 16	

٦	27					
	1972 N 31	lar	USSR	3V	landing	Stranded in Earth orbit
	1973 N 3	lov	USA	Mariner 10	photo flyby	First good pictures of Venus followed by gravity assist to Mercury
	1975 J	un 8	USSR	Venera 9	orbit and landing	First pictures of the surface of Venus, 4-month orbital photo study of clouds
_	1975 J 14	un	USSR	Venera 10	orbit and landing	Same as Venera 9, one of two cameras failed on each lander
	1978 N 20	lay	USA	Pioneer 12	orbit	Radar mapping, photo study of clouds, operated 14 years
	1978 A 8	ug	USA	Pioneer 13	impact	Cluster of 5 atmosphere probes
	1978 S 9	ер	USSR	Venera 11	flyby and landing	Spectra from clouds to surface, atmosphere chemical analysis
-	1978 S 14	ер	USSR	Venera 12	flyby and landing	Both color cameras, rock analysis, failed on both Venera 11 and 12
1	1981 O 30	oct	USSR	Venera 13	flyby and landing	Color images and rock analysis
	1981 N 4	lov	USSR	Venera 14	flyby and landing	Color images and rock analysis
	1983 J	un 2	USSR	Venera 15	orbit	High resolution radar mapping
_	1983 J	un 7	USSR	Venera 16	orbit	High resolution radar mapping
	1984 D 15	ec	USSR	Vega 1	flyby and landing	Night landing of a balloon probe dropped enroute to Halley's comet encounter
	1984 D 21	ec	USSR	Vega 2	flyby and landing	Same as Vega 1
-	1989 N 4	lay	USA	Magellan	orbit	High resolution radar mapping
┥	1989 O 18	oct	USA	Galileo	flyby	Images of Venus then gravity assist to Jupiter

Space Today Online - History of the Exploration of Venus

9/19/12 1:03 PM

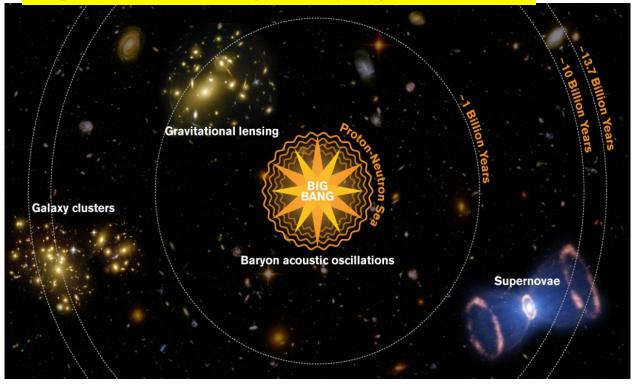
SOURCE: STO

PHYS 162 Lecture 4a Top of this page Venus probes Venus index Solar System Search STO STO cover Feedback E-mail

USA

Cassini

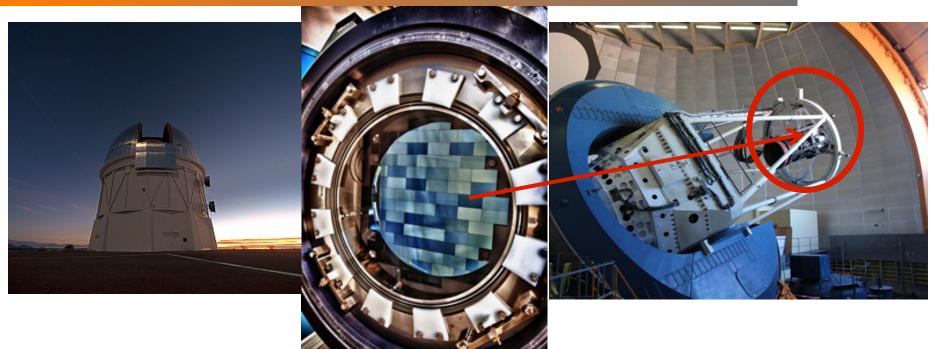
flyby


http://www.spacetoday.org/SolSys/Venus/VenusMissionsTable.html

Copyright 2005 Space Today Online

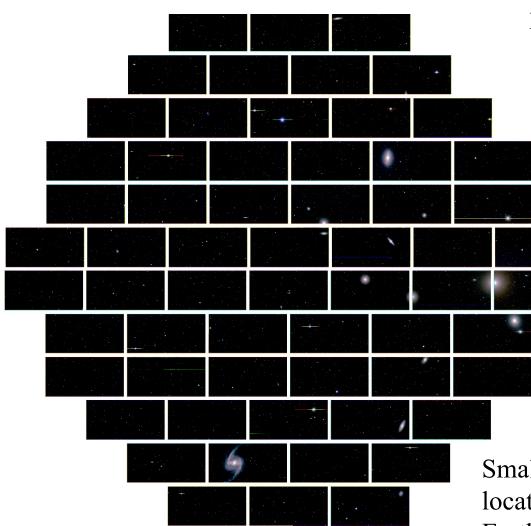
Images of Venus and then gravity assist to Saturn

Recent Dark Energy Survey News...

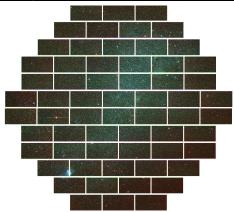

http://www.darkenergysurvey.org/index.shtml

In 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is **speeding up**. Yet, according to Einstein's theory of General Relativity, gravity should lead to a slowing of the expansion.

To explain cosmic acceleration, cosmologists are faced with two possibilities: Either 75% of the universe exists in an exotic form, now called **dark energy**, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales. Need to measure light from early Universe with high precision. PHYS 162 Lecture 4a

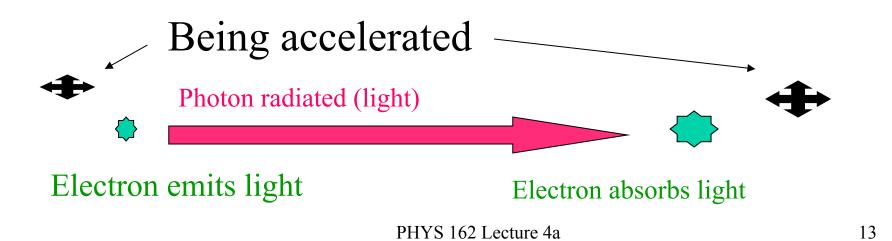

Dark Energy Survey Measurements

The Dark Energy Survey (DES) is designed to probe the origin of the **accelerating universe** and help uncover the nature of **dark energy** by measuring the 14-billionyear history of cosmic expansion with high precision This collaboration is building an extremely sensitive 570-Megapixel digital camera, DECam, and will mount it on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory high in the Chilean Andes. Main studies: **Supernovae, Gravitational lensing, Galaxy clusters, Baryon acoustic oscillations.**


PHYS 162 Lecture 4a

First DES Pictures!

A zoomed-in view highlights the barreled spiral galaxy NCG 1365:

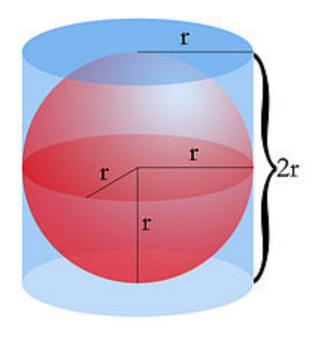


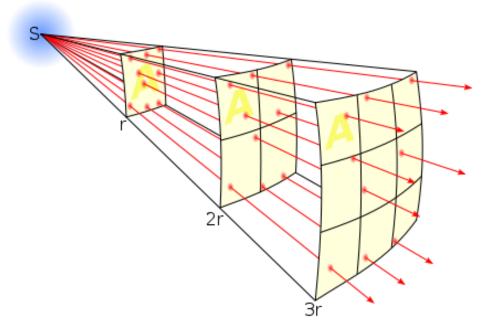
Small Magellanic Cloud dwarf galaxy, located some 200,000 light years from Earth in the constellation Tucana.

http://fnal.gov/pub/presspass/press_releases/2013/DES-2013-images.html PHYS 162 Lecture 4a

LIGHT

- Visible light, infrared, UV, radio are all types of Electromagnetic Radiation. They differ by having different frequencies → different colors
- EM Radiation is caused by accelerating electric charge (usually electrons since they are the lightest)


Electromagnetic Force


- There is a force between any two bodies 1 and 2 $F = Cq_1q_2/r^2$
- with q_1 and q_2 being the charges and r being the distance between 1 and 2
- Both attractive and repulsive charges
- Depends on the charges of the two bodies
- Decreases as the distance increases
- Is the same force everywhere in the Universe
- Stronger than Gravity but average charge usually equal 0
 Electricity and Magnetism are different aspects of the same force

Breaking down the Force....

• Space is homogeneous and isotropic implies that LIGHT emanates equally in all directions in 3 dimensional space ...

The surface of a sphere = $4\pi R^2$. If a source is at the center of the sphere, its **flux** is spread out over an area that is **increasing** in proportion to the square of the distance from the source.

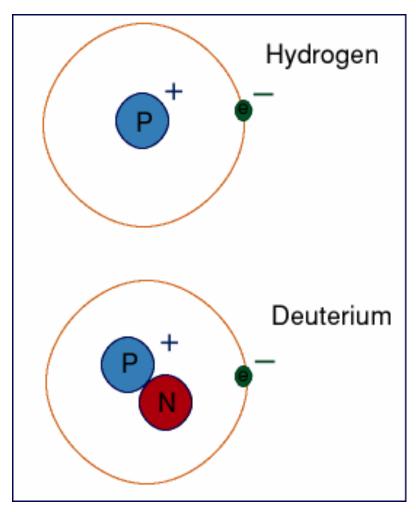
The lines represent the flux emanating from the source. The total number of flux lines depends on the strength of the source and is constant with increasing distance.

Physics 162 Lecture 3b

Electromagnetic Force Example

PHYS 162 Lecture 4a

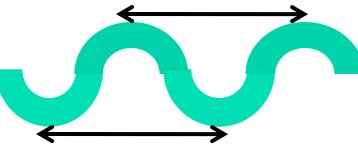
Gravity vs Electric Force


- Electric force dominates daily life
- \rightarrow all senses
- \rightarrow all chemistry
- Easy to observe much stronger then gravity
- \rightarrow floor prevents us from falling to Earth's center
- \rightarrow can stick a balloon to the wall
- \rightarrow levitating magnets
- Why gravity is so weak is one of the unanswered questions in physics. Extra Dimensions? more later in course

Gravity vs. Electric Force

- electric and gravitational forces \rightarrow same form
- compare strengths for electron and proton in Hydrogen

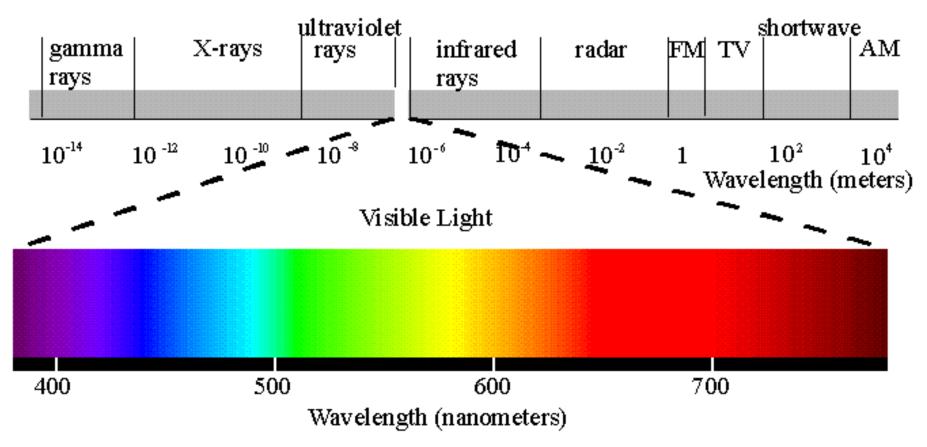
Hydrogen

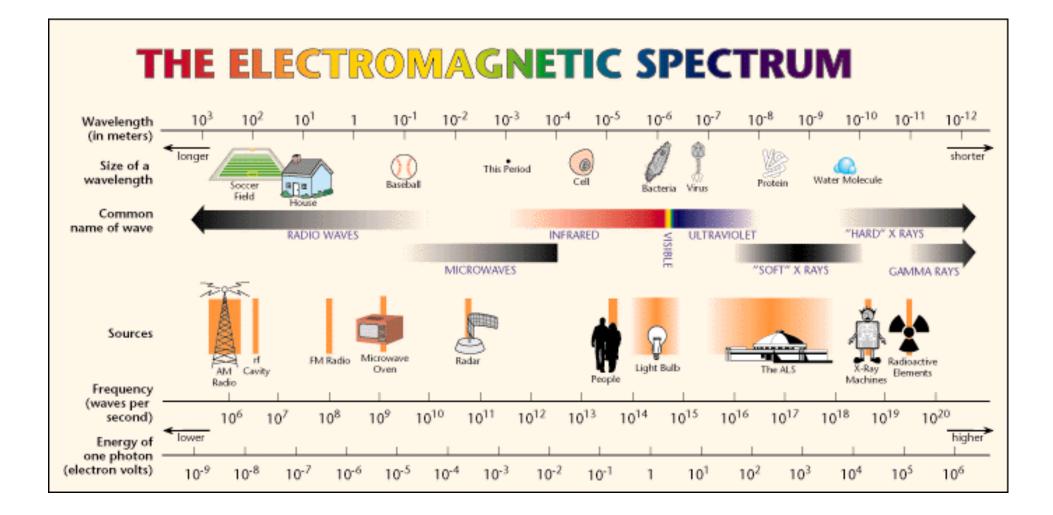

- Simplest atom just one electron and one proton
- "heavy" hydrogen or deuterium adds one neutron to the nucleus

PHYS 162 Lecture 4a

Light

- Light is a bunch of photons \rightarrow EM radiation or EM waves
- wavelength (λ) = distance between waves




- Period = time between wave peaks
- Frequency (v) = 1/period = how rapidly wave is changing
 So 60 Hz = 60 Hertz = 60 beats per second is the same as a period of 0.016 seconds

```
velocity = wavelength X frequency
sound = 1 mile/5 seconds
light = 1 mile/5 microseconds = 300,000 km/sec
PHYS 162 Lecture 4a
```

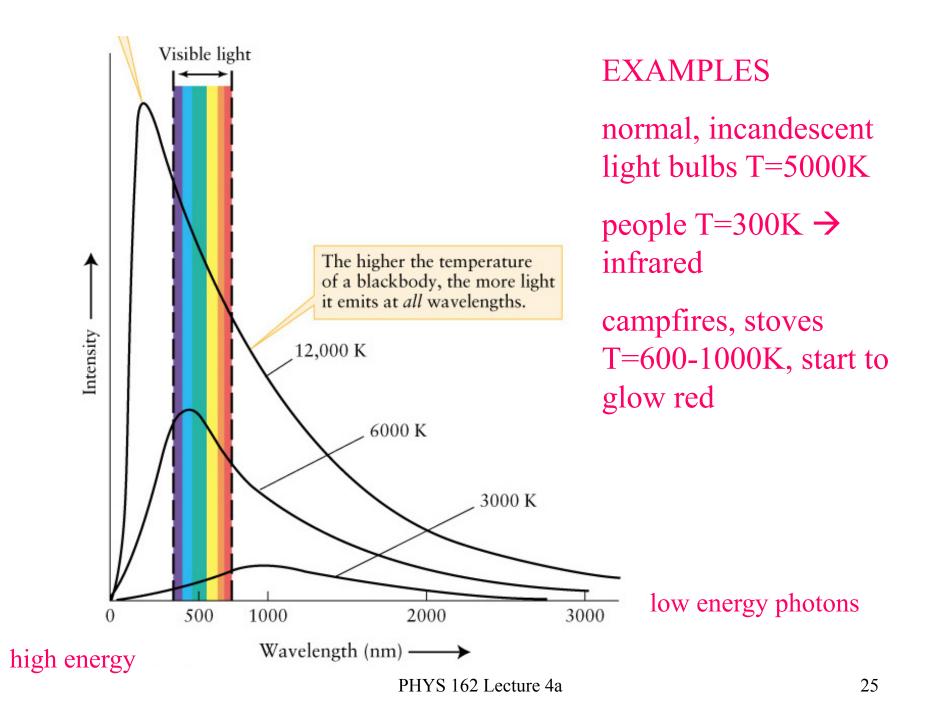
high energy ~ high frequency

low energy ~ low frequency

Continuous Spectrum

- Radiation of light due only to Temperature of object
- All frequencies
- Peak of frequency spectrum depends on Temperature wavelength_{max} = 3,000,000/T
 with wavelength in nanometers and T in Kelvin
- Total energy emitted

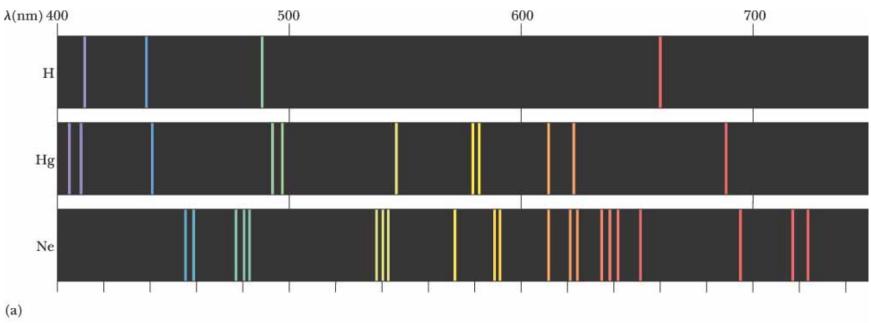
 $E = sigma x T^4$ sigma=constant


Temperature

Temperature <=> Velocity <=> Energy At higher Temps higher velocities more acceleration of electrons more light emitted

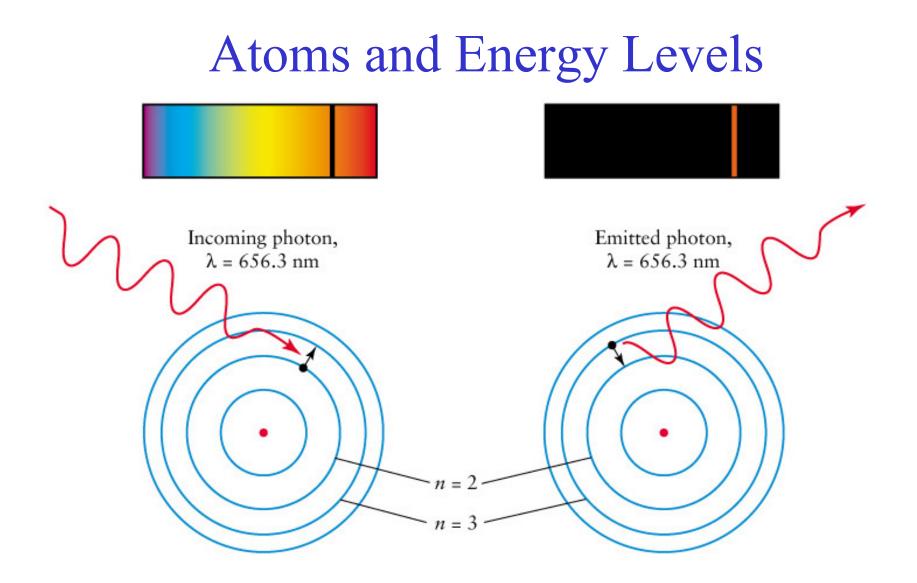
• Kelvin Scale

Absolute $0 = 0^{0} \text{ K}$ = -273⁰ C = -459⁰ F


at high T Kelvin and Centigrade about same

Discrete Spectrum

- "Spikes" at specific frequencies
- Depends on which atoms are present
- Examples include fluorescent or Neon or Mercury lights
- Can be used to identify chemical composition of objects (spectroscopy)


Atoms and Energy Levels

emission lines can tell one atom from another – in this case Hydrogen from Mercury from Neon

Atoms and Energy Levels

- An atom is a nucleus surrounded by electrons
- held together by the electromagnetic force
- Electron can be in different energy states
- Changes in energy states (Quantum Leaps) produce discrete spectrum

- Transitions between different atomic energy states either emit or absorb light
- The energy of the light (the photon's frequency) is equal to the difference between the atomic energy states
- Pattern of photon frequencies tells what atom is emitting the light

E(photon) = hf H = Planck's constant F = frequency

Demos!!

How fluorescent light works

- Tube filled with Mercury and Argon gas
- Initial HV heat up gas ◊ ?Argon "plasma"
- moves electrons in Mercury to higher energy levels
- •electrons "fall" to lower energy levels and emit UV light
- •UV light absorbed by phosphor coating on walls and is reemitted at lower energy, with mix of colors that appears white