Planetary Motion (con't)

- Experimental observations (made prior to telescopes) were used to understand motion of the planets
- Difference between "apparent motion" and "real" motion understood key part of modern science.
- Lead to Kepler's 3 laws of planetary motion
- Provided experimental observations which are later explained by physics developed by Galileo, Newton and others

Brahe and Kepler

- Brahe led team which collected data on position of planets (1580-1600 no telescopes)
- Kepler (mathematician) hired by Brahe to analyze data. Determined 3 Laws of planetary motion (1600-1630)
- Input 20 years of data on: angular position of planets approximate distances from Earth (accurate relative distances)
- Few "modern" tools (no calculus, no graph paper, no log tables)

Observations of Brahe 1580-1600

- Brahe was a Danish nobleman who became famous after observing a supernova and showing it was "far away"
- Danish king provided funding and an island where Brahe set up an observatory – no telescopes just (essentially) sextants - that is long sticks to measure angles which could be flipped to measure both E-W and N-S angle at same time

PHYS 162 Lecture 2b

Brahe's Observatory

PHYS 162 Lecture 2b

Apparent Shift = Parallax

- A moving observer sees fixed objects move.
- Near objects appear to move more than far objects
- The effect is due to the change in observation point, and is used by our eyes for depth perception.

5

Sources of Parallax

- Heliocentric parallax uses the sun as a base.
- Take a photo with telescope at two different seasons → come back to later
- Geocentric parallax uses the earth as a base.
- Make a measurement two or more times in one night.
- Use for planets → Brahe's data also had distances to planets plus position in sky

Kepler's Laws of Motion

- Kepler figured out correct orbital shape and determined some relationships between the orbits of different planets
- A big step was realizing that Earth's orbit about the Sun also wasn't a circle – mostly he used relative location of Mars after repeated orbits around the Sun (Mars is close and so most accurate measurements)

Kepler's Laws of Planetary Motion (1630)

FIRST LAW: The orbit of a planet is an ellipse with the sun at one focus.

A line connecting the two foci in the ellipse always has the same length.

PHYS 162 Lecture 2b

Kepler's Second Law

• The line joining a planet and the sun sweeps equal areas in equal time.

PHYS 162 Lecture 2b

Kepler's Third Law

- The square of a planet's period is proportional to the cube of the length of the orbit's semimajor axis.
- Mathematically, $T^2/a^3 = \text{constant.}(=1 \text{ if use 1 Earth year and } 1 \text{ AU as units})$, or $T^2 = \text{const X } a^3$.
- The constant is the same for all objects orbiting the Sun.

	Mean Distance from Sun	Sidereal Orbital Period
	AU	P _e
Mercury	0.387	0.241
Venus	0.723	0.615
Earth	1.000	1.000
Mars	1.524	1.881
Jupiter	5.203	11.857
Saturn	9.537	29.424
Uranus	19.191	83.749
Neptune	30.069	163.727

ics

Third Law Example

- Jupiter compared to Earth
- If we measure that it takes Jupiter 11.9 years to orbit the Sun then:

```
distance ^{3}(Jupiter-Sun) = period<sup>2</sup>
```

```
distance = period^{2/3}
```

```
distance = (11.9*11.9)^{1/3}
```

```
distance = (142)^{1/3} = 5.2 \text{ AU}
```

- Kepler correctly determined the motion of the planets.
- Did not address WHY. Simply what curve best matched orbits and some arithmetical relationships
- The WHY was determined by physicists like Galileo and Newton.
- They needed to develop Physics as a science: understand motion, forces, and gravity

Newton and Kepler

- Newton's First Law of Motion:
 - A body remains at rest or moves in a straight line at a constant speed unless it is acted upon by an outside force
- Newton's Second Law of Motion:
 - If a force, F, works on a body of mass M, then the acceleration, A, is given by
 - $F = M^*A$
- Newton's Third Law of Motion:
 - If one body exerts a force on a second body, the second body exerts an equal and opposite force on the first
- Newton's Universal Law of Gravitation
 - $F_{\text{gravity}} = G M_1 M_2 / r^2$
 - G = 6.67 X 10⁻¹¹ meters³ kilograms⁻¹ seconds⁻²

Newton and Kepler (2)...

• When you combine Newton's gravitation and circular acceleration, which must balance in order for the object to remain in orbit, you get a nice relation between the period, distance, and mass of the central body.

-
$$F_{grav} = F_{cent}$$
 → equate gravitational force to centripetal force
- $F_{grav} = G m_1 m_2 / r^2$
- $F_{cent} = m_2 V^2 / r$

• Let the Earth be m₁ and the Moon be m₂. For **circular motion** the distance r is the semi-major axis A.

- V = 2 π A /T \rightarrow T = period of moon \rightarrow G m₁ m₂ / A² = m₂ V² /A - G m₁ / A² = ((2 π A)²/T²)/A \rightarrow note that m₂'s cancel!

• Rearrange to place all the A terms on the right and all the T terms on the left:

- G m₁/(4 π^2) T² = A³ Looks just like **Kepler's Third Law**!

• To use A and P to solve for mass:

 $- m_1 = A^3 (4 \pi^2/G) / T^2$