Planetary Motion (con’t)

- Experimental observations (made prior to telescopes) were used to understand motion of the planets
- Difference between "apparent motion" and "real" motion understood - key part of modern science.
- Lead to Kepler's 3 laws of planetary motion
- Provided experimental observations which are later explained by physics developed by Galileo, Newton and others

Brahe and Kepler

- Brahe led team which collected data on position of planets (1580-1600 no telescopes)
- Kepler (mathematician) hired by Brahe to analyze data. Determined 3 Laws of planetary motion (1600-1630)
- Input - 20 years of data on:
angular position of planets approximate distances from Earth (accurate relative distances)
- Few "modern" tools (no calculus, no graph paper, no log tables)

Observations of Brahe 1580-1600

- Brahe was a Danish nobleman who became famous after observing a supernova and showing it was "far away"
- Danish king provided funding and an island where Brahe set up an observatory - no telescopes just (essentially) sextants - that is long sticks to measure angles which could be flipped to measure both E-W and N-S angle at same time

3

Brahe's Observatory

PHYS 162 Lecture 2b

Apparent Shift = Parallax

- A moving observer sees fixed objects move.
- Near objects appear to move more than far objects
- The effect is due to the change in observation point, and is used by our eyes for depth perception.

Geocentric parallax

Sources of Parallax

- Heliocentric parallax uses the sun as a base.
- Take a photo with telescope at two different seasons \rightarrow come back to later
- Geocentric parallax uses the earth as a base.
- Make a measurement two or more times in one night.
- Use for planets \rightarrow Brahe's data also had distances to planets plus position in sky

Kepler's Laws of Motion

- Kepler figured out correct orbital shape and determined some relationships between the orbits of different planets
- A big step was realizing that Earth's orbit about the Sun also wasn't a circle - mostly he used relative location of Mars after repeated orbits around the Sun (Mars is close and so most accurate measurements)

Kepler's Laws of Planetary Motion (1630)

FIRST LAW: The orbit of a planet is an ellipse with the sun at one focus.

A line connecting the two foci in the ellipse always has the same length.

Kepler's Second Law

- The line joining a planet and the sun sweeps equal areas in equal time.

Kepler's Third Law

- The square of a planet's period is proportional to the cube of the length of the orbit's semimajor axis.
- Mathematically, $\mathrm{T}^{2} / \mathrm{a}^{3}=$ constant. (=1 if use 1 Earth year and 1 AU as units), or $\mathrm{T}^{2}=$ const Xa^{3}.
- The constant is the same for all objects orbiting the Sun.

PHYS 162 Lecture 2 b

Mean Distance
 from Sun

Sidereal

Orbital Period

AU
Mercury 0.387
Venus 0.723
Earth 1.000
1.524

Jupiter 5.203
Saturn 9.537
Uranus 19.191
Neptune 30.069
$P_{\text {e }}$
0.241
0.615
1.000
1.881
11.857
29.424
83.749
163.727

Third Law Example

- Jupiter compared to Earth
- If we measure that it takes Jupiter 11.9 years to orbit the Sun then:
distance ${ }^{3}($ Jupiter-Sun $)=$ period 2
distance $=$ period ${ }^{2 / 3}$
distance $=(11.9 * 11.9)^{1 / 3}$
distance $=(142)^{1 / 3}=5.2 \mathrm{AU}$
- Kepler correctly determined the motion of the planets.
- Did not address WHY. Simply what curve best matched orbits and some arithmetical relationships
- The WHY was determined by physicists like Galileo and Newton.
- They needed to develop Physics as a science: understand motion, forces, and gravity

Newton and Kepler

- Newton's First Law of Motion:
- A body remains at rest or moves in a straight line at a constant speed unless it is acted upon by an outside force
- Newton's Second Law of Motion:
- If a force, F , works on a body of mass M , then the acceleration, A , is given by
$-\mathrm{F}=\mathrm{M}^{*} \mathrm{~A}$
- Newton's Third Law of Motion:
- If one body exerts a force on a second body, the second body exerts an equal and opposite force on the first
- Newton's Universal Law of Gravitation
$-F_{\text {gravity }}=G_{1} M_{2} / r^{2}$
- $G=6.67 \times 10^{-11}$ meters 3 kilograms $^{-1}$ seconds $^{-2}$

Newton and Kepler (2)...

- When you combine Newton's gravitation and circular acceleration, which must balance in order for the object to remain in orbit, you get a nice relation between the period, distance, and mass of the central body.
$-\mathrm{F}_{\text {grav }}=\mathrm{F}_{\text {cent }} \rightarrow$ equate gravitational force to centripetal force
$-\mathrm{F}_{\text {grav }}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
- $\mathrm{F}_{\text {cent }}=\mathrm{m}_{2} \mathrm{~V}^{2} / \mathrm{r}$
- Let the Earth be m_{1} and the Moon be m_{2}. For circular motion the distance r is the semi-major axis A.
$-\mathrm{V}=2 \pi \mathrm{~A} / \mathrm{T} \quad \rightarrow \quad \mathrm{T}=$ period of moon $\quad \rightarrow \quad \mathbf{G} \mathbf{m}_{1} \mathbf{m}_{2} / \mathbf{A}^{\mathbf{2}}=\mathbf{m}_{2} \mathbf{V}^{2} / \mathbf{A}$
$-\mathrm{Gm}_{1} / \mathrm{A}^{2}=\left((2 \pi \mathrm{~A})^{2} / \mathrm{T}^{2}\right) / \mathrm{A} \quad \rightarrow$ note that m_{2} 's cancel!
- Rearrange to place all the A terms on the right and all the T terms on the left:
- $\mathrm{Gm}_{1} /\left(4 \pi^{2}\right) \mathrm{T}^{2}=\mathrm{A}^{3} \quad$ Looks just like Kepler's Third Law!
- To use A and P to solve for mass:
$-\mathrm{m}_{1}=\mathrm{A}^{3}\left(4 \pi^{2} / \mathrm{G}\right) / \mathrm{T}^{2}$

