Supernovas

- 10-20 supernovas occur every 1000 years in a galaxy the size of the Milky Way (~ 200 billion stars) with $\sim 15 \%$ being type Ia
- 8 observed in last 2000 years $(185,386$, 393, 1006, 1054, 1181, 1572, 1604)
- Hard to observe if on "opposite" side of Milky Way \rightarrow all recent observed SN are in other galaxies

1572 (Tycho Brahe) and 1604 (Kepler)

In Milky Way both probably Type Ia

Supernova 2014j - Jan 2014

In M82 (Ursa Major). Type Ia. Closest of this type observed in modern times. 11.5 million LY away. Discovered at undergrad session Univ Coll London (SN1972 e was 11 MLY but pre "modern")

Supernova PTF 11kly - Sept 2011

 In Pinwheel Galaxy. Type Ia. 2nd closest Ia observed in modern times. 21 million LY away

Supernova 1987a (in movie)

Large Magellanic Cloud Type II 180,000 LY away

PHYS 162

Supernovas and Core Collapse

- Massive stars have fusion to heavier nuclei (Neon, Silicon, Sulpher, etc)
- End up with core of Iron nuclei plus 26 unbound "free" electrons for every Fe
- Electrons are "degenerate" as so close together. This causes them to provide most of the pressure resisting gravity
- Enormous stress. If electrons "give way" leaves "hole" in center of star

Supergiant \rightarrow Iron Core

During Supernova

- Core collapse gives 200 billion degrees \rightarrow energetic photons
- Breaks up many nuclei

$$
\mathrm{Fe} \rightarrow 26 \mathrm{p}+31 \mathrm{n} \quad \mathrm{O} \rightarrow 8 \mathrm{p}+8 \mathrm{n}
$$

- New nuclei form \rightarrow photons, n, and p strike shell around core
- $\mathrm{p}+\mathrm{e} \rightarrow \mathrm{n}+$ neutrino

1. Burst of neutrinos. 1000 times more energy than from light (photons)
2. Leftover neutron star

Core Collapse

core collapses into mostly neutrons very hot
outer layers rush into "hole" smashing into shock wave from core
happens when mass of core > 1.4 Mass Sun. Chandrashekar limit

Detection of neutrinos from SN1987A in Japan and Ohio

SN produced 10^{58} neutrinos

$10^{15} \mathrm{v} / \mathrm{cm}^{2}$ at Earth
10^{18} neutrinos from SN passed through any person's body

Traveled 175,000 light years to Earth
Passed through Earth
17 were detected in detectors made from 100 tons of water located in underground mines in Ohio and Japan

Nuclear Synthesis

- All elements heavier than Helium are made inside stars
up to Iron - fusion in Red Giants
heavier than Iron (and some lighter) - Supernova explosions
- Stars lose matter at end of life-cycle becoming Red Giants (can detect) Supernova debris (can detect) and this matter forms new stars (and planets and us)

Supernova Debris SN1987a

a Supernova 1987A seen in 1996

Supernova Debris

Crab Nebula M1

Supernova 1054 (observed by Chinese and Arabs). Has neutron star

PHYS 162

Cassiopeia A maybe observed in 1680

NEUTRON STARS

In supernova explosion core collapses

- $\mathrm{e}^{-}+\mathrm{p} \rightarrow \mathrm{n}+v$
- packed neutrons remain giving neutron "star" about 1\% protons/electrons
- very hot (200 billion degrees) and very small (10-30 km - DeKalb County)
- so very, very dense. $1 \mathrm{~cm}^{3}$ has mass of 100 million tons

Fate of Stars

INITIAL MASS	Final State
relative to Sun's mass	
$\mathrm{M}<0.01$	planet
$.01<\mathrm{M}<.08$	Brown dwarf (not true star)
$0.08<\mathrm{M}<0.25$	not Red Giant \rightarrow White Dwarf
$0.25<\mathrm{M}<12$	Red Giant \rightarrow White Dwarf
$12<\mathrm{M}<40$	Supernova: neutron star
$\mathrm{M}>40$	Supernova: black hole

	White Dwarf	Neutron Star
Mass (relative to Sun)	1.0 (always $<$ 1.4)	1.5 (always $<$ $3)$
Radius	5000 km	10 km
Density	$10^{6} \mathrm{~g} / \mathrm{cm}^{3}$	$10^{14} \mathrm{~g} / \mathrm{cm}^{3}$

Properties determined by "degenerate" electrons and neutrons.

Angular Momentum + Neutron Stars

Angular momentum $=$ MASS x VELOCITY x RADIUS decreasing RADIUS increases VELOCITY

Angular momentum is conserved: spinning chair ice skater
formation of neutron star in collapse of larger spinning star

NEUTRON STARS II

- spin rapidly \rightarrow from >100 per second (Hz) to once per many seconds/minutes/hours/days
- EM radiation from protons/electrons + spin \rightarrow large magnetic fields
- observe as repeating flashes of light PULSARS and seen in debris of known supernova explosions
- discovered in 1967 by grad student Jocelyn Bell. Her advisor Anthony Hewitt won Nobel prize. Found in Crab Nebula where Chinese had recorded a supernova in 1054. First called LGM for "little green men"

Crab Nebula

radio

infrared
period $=30 \mathrm{~Hz}$ or 0.033 sec and can be "seen" in visible and X-ray

Rotating Neutron Star: not all point to Earth

a One of the beams from the rotating neutron star is aimed toward Earth: We detect a pulse of radiation.

b Half a rotation later, neither beam is aimed toward Earth: We detect that the radiation is "off."

Surface Gravity

- $\mathrm{g}=\mathrm{M} / \mathrm{R}^{2}$
- for neutron star: mass is similar to Sun or 1,000,000 X Mass(Earth) while radius is 10 km or .002 Radius(Earth)
- surface gravity NS $=10^{11}$ Earth's
- force of gravity is resisted by degenerate neutrons
- If Mass(NS) > 3xMass(Sun), neutron star collapses into BLACK HOLE whose radius approaches 0

BLACK HOLES

- very small radius with mass $>3 x \operatorname{Mass}(S u n)$ (and can be much, much more massive)
- so much gravitational force that not even light can escape --- escape velocity is greater than the speed of light
- escape velocity $=\operatorname{sqrt}(2 \mathrm{gR})=\operatorname{sqrt}(2 \mathrm{GM}) / \mathrm{R}$

BLACK HOLES II

- clearly "normal" matter can't escape surface but why light??
- classical (Newton) gravity has force $=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$. As mass(photon) $=0$, and photon=light, then gravity should not effect
- But Einstein (in General Relativity) showed that light is bent by large gravitational fields
- photons travel along space-time lines \rightarrow curved near massive objects \rightarrow near Black Hole light from BH is "trapped" \rightarrow nothing can escape gravity's pull

Gravity bends space-time

Gravity: Space as a Rubber Sheet

- Matter tells space how to curve

-Curved space tells matter how to move

Gravity bends space-time

Einstein lens. Galaxy bends
light from another galaxy further \rightarrow away (NIU student Donna
Kubik thesis. Matt Wiesner also
works on this)

Gravity bends space-time: from S. Martin

Same patch of sky in day time

Yellow = observed positions of stars during eclipse

BLACK HOLES III

- Black holes can keep accumulating mass...including "colliding" Black holes. Very massive (million times mass Sun) at center of many galaxies

Matter falls into BH
\rightarrow it grows (and grows and grows)

Matter falling in can also heat up and produce light

Observing Black Holes

- observe radiation from hot matter falling into black hole
- observe orbit of normal star around "unseen" companion. Gives mass and if >3 xmass(Sun) then assume black hole (if smaller maybe neutron star)

BLACK HOLES IV

- perhaps new physics but lack quantum theory of gravity. Items like wormholes, breaks/tunnels in space-time, other dimensions....

Star Life Cycles

Star Life Cycles - Summary

Test 2 Study Guide

- How to measure distances to stars (1) helio-centric parallax and (2) spectroscopic parallax
- Hertzprung-Russell diagram identifiers (main sequence, red giant, white dwarf)
- luminosity vs radius vs surface temperature for stars
- star clusters and how they are used to study star aging
- steps leading from gas cloud to main sequence star
- steps leading from Red giant to supernova (or white dwarf to SN) and what happens during supernova
- difference between white dwarf, neutron star, black hole

REMINDER HertzprungRussell Diagram

Plot Luminosity versus surface temperature

HertzprungRussell Diagram

Stars with larger sizes are brighter then a smaller star with the same surface temperature

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is Energy/area $=\sigma T^{4}$. Examples

- Two stars. Same temperature and radius \rightarrow same Luminosity
- Two stars. Same temperature. Radius(B) $=2 x \operatorname{Radius}(A)$. So surface area $(B)=4 x$ surface area (A) \rightarrow
Luminosity $(B)=4 x L u m(A)$

Radius $=1$

$$
\text { radius }=2
$$

Temperature vs Luminosity vs Radius of Stars

Energy emitted by surface of star due to EM radiation is Energy/area $=\sigma T^{4}$. Examples

- Two stars. Same radius. Temperature $(B)=2 x T e m p(A)$. (Energy/Area)B $=2^{4}($ Energy $/$ Area) A or (Energy/ Area)B $=16 x($ Energy $/$ Area) B
Luminosity $(\mathrm{B})=16 x \operatorname{Lum}(\mathrm{~A})$

Temp $=6000$

Temp $=12,000$

