Relativistic kinematics |

Just a brief review at this
stage before we delve in



Relativistic kinematics :

y A y’
# Note simplicity from
choice of units!
—_—
v 2 =y (z—t)
Y =7
/y:(l_,UQ)_l/Q 2 =2,y =Y



Inverse transformation

S S’
y 4 y'# . o
Note simplicity from
choice of units!
—_—
/ x=7<x,+vt/)
Y =7
r=z,y=y

t = (¢ + va)



Consequences )

Cannot define

: : / simultaneity in all
ty=tg+yv(rp —7a)

reference frames

Lorentz Contraction
(objects shrink)

/ Time dilation (moving

u +
U = ; clocks run slow)
l+uv *=
What happens Velocity addition is not
if U’ = speed of light (which as simple as before

is ... what in our units?)



On to four-vectors

Are folks familiar with four-
vector notation?



On to four-vectors

Get used to them :)



Space-time 4-vectors
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All we've done here is
label the Oth component of
space-time as time, and
then the normal (x,y,z)

Note that x in the 4-vector
IS standard notation, but it
IS not the position x



Lorentz transformations with four-vectors

P y (azo — vz’
zl = vy (:171 — vz’
2 2
23— .3

Introduces a nice
symmetry to the
transformations, which
leads us to re-writing it
as...

Where A is a 4x4
matrix. Let’'s get the
coordinates of the
matrix on the board...



Hopefully we got this correct :)

vy v 0

B — YV Y 0
A= 0 0 1
0 0 0

3
/
po_ Bl AM oV
x —ZAUCIZ‘ = Az
v=0

Summation

notation will be used
alLOT

—_— O O O

The symmetry really
stands out here

The second form has
the sum implicit, and
IS shorthand to save
smart (read: lazy)
physicists from typing
and writing



IVERERIS

Define this invariant |. How
does it transform? What is I’ ?

1
Now use °° = 5
1 —wv




IVERERIS

] = (ZI’JO)Q o (261)2 . (5172)2 o (:E‘S)Q

J = ,72 ((CIJO)Q (1 o U2) o (2131)2 (1 . U2)) . (332)2 o (1,3)2 — ]

Now we see why we called |

an invariant.
Define: Rewrite:
1 0 0 0 .
0 -1 0 0
7710 0 -1 0 = Z G x” = gy’
0 0 0 -1 w=0v=0




Covariant vs contravariant

covariant contravariant
vector (down) vector (up)

Xo = X0
X1 — _X1
X2 = -X2
X3 — _X3

\ /

L 1%
Ty = Guv®

1%
[ =2xz,2" =2,

The names are not quite as
Important as remembering
that they are different (and
that it's easy to convert from
one to another)



Generalizing this

a“bﬂ = aﬂb“ — o' — a'b! — a%b? — a3b°

Four-vector version of the dot
product (which is also an
invariant but only for three spatial
dimensions)



Generalizing this

a“’bu = aub“ — 'Y — ol — @%b — o303

Four-vector version of the dot
product (which is also an
invariant but only for three spatial
dimensions)

atb, = a’b’ —a-b

a® = ata, = a’a’ — a*



More about the length of a 4-vector

a® = ata, = a’a’ — @

a2 > (0 time-like
a2 = 0 light-like
a2 < 0 space-like (like normal spatial 3-vectors)



Before
VA VB

@ &

mMAa mMp

Conservation of momentum:
mava +mpvp = MoV + Mpup

Now imagine a frame moving
with constant velocity V with
respect to this frame

/

vy =vq4 —V
/

/UB:/UB_V
/

Vo =vc —V
/

vp =vp —V



Let’s look at conservation of momentum

Now imagine a frame moving
with constant velocity V with :
respect to this frame

/ / / /

MAV, + MBU = MoV + MpUp /

mava +mpug —V(ma +mp) =mecve +mpvp —V(mec +mp)

And we know mava + mpvp = mcvc + mpup

V(ima+mp)=V(mc+mp)

ma+mp =mgc +mp




Classical conservation of momentum

Classical conservation of
momentum (in all inertial

reference frames) implies
conservation of mass!

ma+mp = mc +mp




Conservation of momentum in SR

Before| After
VA VB

@ &

ma msp Mc IMD

Conservation of momentum:
mava +mpvp = MoV + Mpup

v — Vv
Now imagine a frame moving S —uaV
with constant velocity V with V=
respect to this frame. Note the =V

vo = 1—?}(]V

use of new velocity addition o
formula! R PN




Conservation of momentum in SR

mava +mpuvgp = mMcUVc + Mpup

MAV 4, + MBU = MoV + MpUp

UA_V—I—m UB—V —m ”UC—V m ?}D—V
1 —wvaV Bl—vBV_ Cl—vCV Dl—vDV

ma

Velocities no longer nicely
cancel, so we're stuck in the
relativistic case! No longer have
proof of mass conservation




Let’s rethink conservation of momentum

dx

Nominal definition of momentum p = m—

Not surprising that we run into
trouble - both numerator and
denominator are not Lorentz
invariant! Let's make an ad hoc try
and replace time with proper time

T =tly dx dx dx
p=m—=m = ym—

ar  d(t/) dt




Conservation momentum with new definition

First frame
™M AU A vaB maovc mDvD
V1—03 ¢1 \/1—210 ¢1
New frame
mAfU/A meU,B B m(;vlc mDv/D
\/1—(?)A \/1— (vg)? \/1—(110 \/1— (vp))?
YA = 1Uﬁ;AV
. UB—V
vB_l—’UBV
’Uc—V
vC:l—vCV
UD—V

YD = 1—’UDV



Some algebra in new frame
/ /

M AV 4 MpBUg

mC"UC

\/1—(UA \/1— (v)?

Let's look at first term:

va—V
ma (1—UAV>
5 =
1 — (ra=V"
1—vaV
va—V
ma (1—UAV)

(1—vaV)2—(va—V)2 B
(1—va V)2

mA(vA — V)
\/(1 - UAV)2 — (UA - V)2
mA(’UA — V)

\/1—|—UAV2—2”UAV—”UA V2—|—2’UAV
mA(vA—V)
1+ 0iV2 -0 — V2

\/1— vD

UA—

1 —vaV
UB—V
1—UBV
Uc—V
1—UOV
UD—V
1—UDV




Some algebra in new frame

/ / / /

M AV 4 mpvg  MCUg mpvp
\/1—(?}A \/1— (v)? \/1—(2}0 \/1— vD
Let’s look at first term: . 1@;3@/
vB:l—UBV

ma (%) B e =V

5 — ve 1—?)0V
1 — (wa=V_ vy = 2=V
1—vaV D=1 _—wpV

M AV A B maV _
VI =031 =V2) (1 =0R)(1—V?)
M AV A 1 ma V




Some algebra in new frame

/ / / /

MAV » mpvg B mcUco mpvp
\/1—(?}A \/1— vB \/1—(1}0 \/1— vD
_ M AV A 1
First term = =2 VIV \/1 — 2 ﬂ 2
So...
1 y But from original
mavA _ ma n
V1I-03V1I=-V2 L\ 1—03 V1-V2 frame
mpvp 1 B mp V o mA/UA mBUB
V1= V1I=V2 /1 —0d /1 -V? —
mcvc 1 mc 4 N \/1 o UA \/1 - UB
V1I=vENV1I=V2 1 —0i V1 -V? maovc mDvD

mpvp 1 mp Vv
VI=vE V1=V /1 —02 /1 —V? \/1_?}0 \/]‘



Thus we get

™m A V mpg V

_|_
V1= V1I=V2 1 =03 V/1-V?

mec V mp V

_|_
V1= V1I-V2 /1 —0v% 1 —V?

Cancel the common term...

mp This quantity
Vl—% \/1 must be
mp conserved then!

Vl — v%, w — v But what is it?



Thus we get

m

V1 — 2

BN m(1 + v*/2)

=m(1—v2)

So this is a statement of the
conservation of energy! At small
velocities, energy is equal to the rest
mass plus the kinematic energy (note
that when v = 0 the energy is not zero,
but m!)



Defining a four-vector

\/1m > =m(1—v2)_1/2 ~ m(1 + v?/2)
— v

So this is a statement of the
conservation of energy! At small
velocities, energy is equal to the rest
mass plus the kinematic energy

This way, p?is
P = (B, py, Dy ps) invariant, as it must be

p'p, = E* —p? =m°

Form = 0 (ex for:
photons), |p|=E



Conveniently in our units

p" = (E, Dz, Py, Pz)

p'py = E* —p* = m’

E =~vym
D = Ymu
—(p/E) = v

As expected, for light,
lv|]=1and |p| = E



Relativistic collisions

We just saw that energy and momentum
(correctly defined) are conserved. For
process A+B—C+D:

EFrs+Eg=FEc+ Ep
pA+ DB =pc +Pp

Conveniently written as:  pf + p% = p¥. + p,

Mass is clearly not

W >et +u,
conserved:



Relativistic collisions

What about a particle decay?
A—-B+C

A A =m?% — (B+ O (B+ O = (Eg+ Ec)*— (pB + pc)’

Lets us estimate the mass of a parent particle
from its decay products. Conversation of
energy also tells us:

mAZ\/mZBer%Jr\/m%er%j

Particle decay products cannot be more
massive than mass of original particle!
(Remember - proton stability...)



One fun example

initial (@) > m

p1=(2m,p) p2=(m,0)

‘ Final
p=(E,p’)

Particle with total energy = 2m collides with an
identical particle at rest. They stick together.
What is the mass of the resulting lump? What is
its velocity?

Conservation of E: 2Zm+m=3m=E



One fun example

initial (@)

p1=(E1=2m,p) p=(3m,p’)
E} —p® =m’
92} — 2 — p2 /
e Pl = p'| = V3m

p° = 3m

p| = V3m



One fun example

Initial ‘ > ‘ ‘ Final

p1=(2m,p)  p2=(m,0) p = (3m,+/3m)

Ef —p? =m?
(2m)2 . m2 _ p2

p2 — 3m2 ’p‘ — ‘p/‘ — \/gm

p| = V3m



One fun example

Initial ‘ > ‘ ‘ Final

p1=(2m,p)  p2=(m,0) p = (3m,+/3m)

M? = E? — (p)? = 9m? — 3m?
M = +/6m Total mass not
conserved



Let’s follow Griffiths Ex 3.3

A pion at rest decays into a muon and a
neutrino. What is the speed of the
muon”?




Let’s follow Griffiths Ex 3.3

Conservation of momentum: pu = -p,
Conservation of energy: E, + E, = E,

So muon and

neutrino travel in

Before ‘ opposite directions
("back to back”)

After ‘

< >
V1 V2




Let’s follow Griffiths Ex 3.3

Apply conservation of energy:
E,+E,=E,
\/mi—l—ﬁ%+\/m3—l—ﬁ,% = \/m2 + p2

T+ B+ B = mae

Pion was at rest

Neutrino mass ~0



Let’s follow Griffiths Ex 3.3

Apply conservation of energy:

VB B = ma

\/mgmg —

L , Equal

My, + Dy, = Mz + Py |° — 2ma Pl | q/
‘\\ 2 _ 2 9 3

Equal "w = Mx = 4Py

mi = m2 — 2m, Dy
2 2
m_ — 1
|pu| = — =



Let’s follow Griffiths Ex 3.3

2 2
my —m;,

2Mm

|ﬁu| —




Let’s follow Griffiths Ex 3.3

‘Uu’

2
ms —m

2
U

m2 + m?

T

Pion mass ~135 MeV
Muon mass ~106 MeV

v~0.25
(25% of the speed of light)



Let’s follow Griffiths Ex 3.3 (continued)

Let’s try using four-vector
notation (remember that
p2=m2 but be careful that p
here is the four-vector p)



Let’s follow Griffiths Ex 3.3 (continued)

Pr = DPu +Dv What is pnpu? The
Dy = Prx — Dy pion momentum is
P2 = (pr—pu): =my =0  Z€T0, SO only first
5 component (energy)
U= Dr+ D~ 2PrPu contributes, and so
0=m2> + mi — 2pxDy, prpu = ExE,

0=m2 + mi —2m,E, Also, since pion was

at rest,E+ = my so
PPy = MnEy




Let’s follow Griffiths Ex 3.3 (continued)

my, = my — 2Mz|p,|
2 2
~my —my,
‘p,u‘ o Qmﬂ-

What is prp,? The pion

momentum Is zero, SO
only first component
(energy) contributes, and

sSo pwp, = ExE,
Since pion was at rest,
Ex = mq What is EV’? It Is

the magnitude of the
neutrino momentum, but
that is the same as the
magnitude of the muon
momentum



Griffiths 3.4

PP—PPPP What is the threshold energy
for this process?

At threshold, all four final state

objects are at rest (if they were

not at rest we could reduce the

CoM caollision energy and

reduce their momentum) Invariant:

(p1 + p2)° = (E +m)* — p°
Initial ‘ > ‘

p1=(E,p) p2=(m,0)




Griffiths 3.4

Invariant:
(p1 +p2)? = (E+m)° —p°

(p3 + pa +ps +pe)” = (4m)° = (p1 + p2)°
16m* = (E +m)? — p°

p2 _ E2 —m
Initial ‘ : ‘

p1=(E,p) p2=(m,0)

Final @@ @ O

All at rest

2




Griffiths 3.4

16m* = (E + m)* — p° p° = E* —m?
16m? = E? + 2mE + m? — E? + m?

Lim? = 2mE

What if we didn't fire at a stationary

target?
initial @) > < ®

p1=(E,p) p2=(E,-p)
(p1 +p2)2 = (QE)Q —(p + —P)2 = 4F?
16m? = 4E? — E = 2m




Huge advantage to colliding beam machines

In this example, have to give protons a
lot more kinetic energy for the fixed
target version! Of course, the accelerator
for the beams is much more complex :)



GZK cutoff

Greisen—Zatsepin—Kuzmin: Over long

enough distances, high-energy cosmic
rays coming from the Universe should

interact with the cosmic microwave

background

http://
www?2.astro.psu.ed

u/users/nnp/cr.html
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GZK cutoff

¥ +p— pr°
D~ t Pp = Dp' T Pro
(D +1p)* = (P + Pro)’
p?y +p12) +2py - pp = pz%/ ‘|‘p72r0 + 2P0 - Py
mf, + 2py - pp = mZQ) + M o + 2Dr0 - Py
2py - Pp = Migo + 2Pr0 - Py
At threshold, pion and proton in final state

are at rest and their momenta are zero (and
energies equal to their masses)

2D~ - Dp = mio + 2mg om,

At threshold, have a head-on collision. Assume
highly relativistic particles and we get...



GZK cutoff

2Dy Pp = mio + 2m om,,

Head-on collision with energies >> mp

P~y = (E% Eva 0, O)
Pp = (Epv — L, 0, O)
2pp - Py = 2B, Ey — 2(—Ep)Ey = 4By E,

Want to solve for unknown cosmic rate proton
energy. Photon energy is
CMB (6x10-4 ev). Plug in and we get ~2x1020 ev

Similarly have v +p—nr"



GZK cutoff

Of course, we used an “average” CMB photon, and
ignored a full calculation of the kinematics (which
goes through delta resonances) and assumed
protons. Nevertheless, distribution doesn’t go to zero!
Where are these sources coming from? Nearby

sources? Or new physics?
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Fun thing to google

> C A https://en.wikipedia.org/wiki/Oh—My—Cod_particle ' (©] 7} Qd =

¢ ‘el X
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Oh-My-God particle
From Wikipedia, the free encyclopedia

The Oh-My-God particle was an ultra-high-energy cosmic ray (most likely an iron nucleusl¢itation needed))
detected on the evening of 15 October 1991 over Dugway Proving Ground, Utah, by the University of Utah's
Fly's Eye Cosmic Ray Detector.['[2] |ts observation was a shock to astrophysicists (hence the name), who
estimated its energy to be approximately 3 x 1020 eV (3 x 108 TeV, about 20 million times more energetic
than the highest energy measured in radiation emitted by an extragalactic object);[3] in other words, an
atomic nucleus with kinetic energy equal to 48 Joules, equivalent to a 5-ounce (142 g) baseball traveling at
about 93.6 kilometers per hour (60 mph).[4!



And on that note, some homework

Griffiths 3.3, 3.4, 3.6, 3.15, 3.16,
3.17, 3.25 (good for you to start
getting familiar with the PDG, |
suspect)

Also: At the HERA collider, 27.5
GeV electrons collided head-on
with 920 GeV protons. What

was the center of mass energy?



