
1Relativistic kinematics

Just a brief review at this 
stage before we delve in



2Relativistic kinematics

Note simplicity from 
choice of units!



3Inverse transformation

Note simplicity from 
choice of units!

x “ �
´
x

1 ` vt
1 ¯

� “ �
1

z “ z
1
, y “ y

1

t “ �
`
t1 ` vx1˘



4Consequences

Cannot define 
simultaneity in all 
reference frames 

Lorentz Contraction 
(objects shrink) 

Time dilation (moving 
clocks run slow) 

Velocity addition is not 
as simple as before

What happens 
if u’ = speed of light (which 
is ... what in our units?)



5On to four-vectors

Are folks familiar with four-
vector notation?



6On to four-vectors

Get used to them :)



7Space-time 4-vectors

All we’ve done here is 
label the 0th component of 
space-time as time, and 
then the normal (x,y,z) 

Note that x in the 4-vector 
is standard notation, but it 
is not the position x



8Lorentz transformations with four-vectors

Introduces a nice 
symmetry to the 
transformations, which 
leads us to re-writing it 
as...

Where Λ is a 4x4 
matrix. Let’s get the 
coordinates of the 
matrix on the board...



9Hopefully we got this correct :)

The symmetry really 
stands out here

The second form has 
the sum implicit, and 
is shorthand to save 
smart (read: lazy) 
physicists from typing 
and writing

Summation 
notation will be used 
a LOT



10Invariants

Define this invariant I. How 
does it transform? What is I’ ?

Now use



11Invariants

Now we see why we called I 
an invariant.

Define: Rewrite:



12Covariant vs contravariant

covariant 
vector (down)

contravariant 
vector (up)

x0 = x0 
x1 = -x1 
x2 = -x2 
x3 = -x3

The names are not quite as 
important as remembering 
that they are different (and 
that it’s easy to convert from 
one to another)



13Generalizing this

Four-vector version of the dot 
product (which is also an 

invariant but only for three spatial 
dimensions)



14Generalizing this

Four-vector version of the dot 
product (which is also an 

invariant but only for three spatial 
dimensions)



15More about the length of a 4-vector

a2 > 0 time-like 
a2 = 0 light-like 
a2 < 0 space-like (like normal spatial 3-vectors)



16Let’s look at conservation of momentum, classically

mA mB mC mD

vA vB vC vD

Before After

Conservation of momentum:

Now imagine a frame moving 
with constant velocity V with 
respect to this frame



17Let’s look at conservation of momentum

Now imagine a frame moving 
with constant velocity V with 
respect to this frame

And we know
mAvA ` mBvB ´ V pmA ` mBq “ mCvC ` mDvD ´ V pmC ` mDq



18Classical conservation of momentum

Classical conservation of 
momentum (in all inertial 
reference frames) implies 
conservation of mass!



19Conservation of momentum in SR

mA mB mC mD

vA vB vC vD

Before After

Conservation of momentum:

Now imagine a frame moving 
with constant velocity V with 
respect to this frame. Note the 
use of new velocity addition 
formula!



20Conservation of momentum in SR

Velocities no longer nicely 
cancel, so we’re stuck in the 
relativistic case! No longer have 
proof of mass conservation

mA
vA ´ V

1 ´ vAV
` mB

vB ´ V

1 ´ vBV
“ mC

vC ´ V

1 ´ vCV
` mD

vD ´ V

1 ´ vDV



21Let’s rethink conservation of momentum

Nominal definition of momentum

Not surprising that we run into 
trouble - both numerator and 
denominator are not Lorentz 
invariant! Let’s make an ad hoc try 
and replace time with proper time 
𝜏 = t/γ



22Conservation momentum with new definition

First frame

New frame



23Some algebra in new frame

Let’s look at first term:



24Some algebra in new frame

Let’s look at first term:



25Some algebra in new frame

First term = 

So...
But from original 
frame



26Thus we get

Cancel the common term...

This quantity 
must be 
conserved then! 
But what is it?



27Thus we get

So this is a statement of the 
conservation of energy! At small 

velocities, energy is equal to the rest 
mass plus the kinematic energy (note 
that when v = 0 the energy is not zero, 

but m!)



28Defining a four-vector

So this is a statement of the 
conservation of energy! At small 

velocities, energy is equal to the rest 
mass plus the kinematic energy

This way, p2 is 
invariant, as it must be 

For m = 0 (ex for: 
photons), |p|=E



29Conveniently in our units

E “ �m

~p “ �m~v

Ñ p~p{Eq “ ~v

As expected, for light,  
|v| = 1 and |p| = E



30Relativistic collisions

We just saw that energy and momentum 
(correctly defined) are conserved. For 

process A+B→C+D: 
EA ` EB “ EC ` ED

~pA ` ~pB “ ~pC ` ~pD

pµA ` pµB “ pµC ` pµDConveniently written as:

W` Ñ e` ` ⌫e
Mass is clearly not 

conserved:



31Relativistic collisions

What about a particle decay? 
A Ñ B ` C

AµA
µ “ m2

A Ñ pB ` CqµpB ` Cqµ “ pEB ` ECq2 ´ ppB ` pCq2

Lets us estimate the mass of a parent particle 
from its decay products. Conversation of 

energy also tells us:

mA “
b

m2
B ` p2

B `
b

m2
C ` p2

C

Particle decay products cannot be more 
massive than mass of original particle! 

(Remember - proton stability...)



32One fun example

p1=(2m,p) p2=(m,0)
Initial m m

Particle with total energy = 2m collides with an 
identical particle at rest. They stick together. 

What is the mass of the resulting lump? What is 
its velocity?

FinalM
p’=(E,p’)

Conservation of E: 2m+m = 3m = E



33One fun example

p1=(E1=2m,p) p2=(m,0)
Initial m m FinalM

p’=(3m,p’)

E2
1 ´ p2 “ m2

p2m2q ´ m2 “ p2

p2 “ 3m2

|p| “
?
3m

|p| “ |p1| “
?
3m



34One fun example

p1=(2m,p) p2=(m,0)
Initial m m FinalM

|p| “ |p1| “
?
3m

p
1 “ p3m,

?
3mq

E2
1 ´ p2 “ m2

p2mq2 ´ m2 “ p2

p2 “ 3m2

|p| “
?
3m



35One fun example

p1=(2m,p) p2=(m,0)
Initial m m FinalM

p
1 “ p3m,

?
3mq

M2 “ E2 ´ pp1 q2 “ 9m2 ´ 3m2

M “
?
6m

|v| “ |p|
E

“
?
3m

3m
“ 1?

3

Total mass not 
conserved



36Let’s follow Griffiths Ex 3.3

A pion at rest decays into a muon and a 
neutrino. What is the speed of the 

muon?

πBefore

After µ 𝜈

v1 v2



37Let’s follow Griffiths Ex 3.3

Conservation of momentum: pµ = -p𝜈 
Conservation of energy: Eµ + E𝜈 = E𝜋

Before

After µ 𝜈

v1 v2

π

So muon and 
neutrino travel in 

opposite directions 
(“back to back”)



38Let’s follow Griffiths Ex 3.3

Eµ ` E⌫ “ E⇡b
m2

µ ` ~p2µ `
a
m2

⌫ ` ~p2⌫ “
a

m2
⇡ ` ~p2⇡

b
m2

µ ` ~p2µ ` |~p⌫ | “ m⇡

Apply conservation of energy:

Neutrino mass ~0

Pion was at rest



39Let’s follow Griffiths Ex 3.3

Apply conservation of energy:

b
m2

µ ` ~p2µ ` |~p⌫ | “ m⇡

b
m2

µ ` ~p2µ “ m⇡ ´ |~p⌫ |
m2

µ ` ~p2µ “ m2
⇡ ` |~p⌫ |2 ´ 2m⇡|~p⌫ | Equal

m2
µ “ m2

⇡ ´ 2m⇡|~p⌫ |
m2

µ “ m2
⇡ ´ 2m⇡|~pµ|

|~pµ| “ m2
⇡ ´ m2

µ

2m⇡

Equal



40Let’s follow Griffiths Ex 3.3

|~pµ| “ m2
⇡ ´ m2

µ

2m⇡

E2
µ “ ~p2µ ` m2

µ “
`
m2

⇡ ´ m2
µ

˘2

4m2
⇡

` m2
µ

E2
µ “ m4

⇡ ` m4
µ ´ 2m2

⇡m
2
µ ` 4m2

⇡m
2
µ

4m2
⇡

E2
µ “ m4

⇡ ` m4
µ ` 2m2

⇡m
2
µ

4m2
⇡

E2
µ “

`
m2

⇡ ` m2
µ

˘2

4m2
⇡

Eµ “ m2
⇡ ` m2

µ

2m⇡

|v|=|p|/E

|vµ| “ m2
⇡ ´ m2

µ

m2
⇡ ` m2

µ



41Let’s follow Griffiths Ex 3.3

|vµ| “ m2
⇡ ´ m2

µ

m2
⇡ ` m2

µ

Pion mass ~135 MeV 
Muon mass ~106 MeV 

v~0.25  
(25% of the speed of light) 



42Let’s follow Griffiths Ex 3.3 (continued)

Let’s try using four-vector 
notation (remember that 
p2=m2 but be careful that p 
here is the four-vector p)



43Let’s follow Griffiths Ex 3.3 (continued)

p⇡ “ pµ ` p⌫

p⌫ “ p⇡ ´ pµ

p2⌫ “ pp⇡ ´ pµq2 “ m⌫ “ 0

0 “ p2⇡ ` p2µ ´ 2p⇡pµ

0 “ m2
⇡ ` m2

µ ´ 2p⇡pµ

What is pπpµ? The 
pion momentum is 
zero, so only first 
component (energy) 
contributes, and so 
pπpµ = EπEµ 

Also, since pion was 
at rest,Eπ = mπ so  
pπpµ = mπEµ

0 “ m2
⇡ ` m2

µ ´ 2m⇡Eµ

Eµ “ m2
⇡ ` m2

µ

2m⇡



44Let’s follow Griffiths Ex 3.3 (continued)

p⇡ “ pµ ` p⌫

pµ “ p⇡ ´ p⌫

p2µ “ pp⇡ ´ p⌫q2 “ m2
µ

p2µ “ p2⇡ ` p2⌫ ´ 2p⇡p⌫

What is pπp𝜈? The pion 
momentum is zero, so 
only first component 
(energy) contributes, and 
so pπp𝜈 = EπE𝜈 
Since pion was at rest, 
Eπ = mπ. What is E𝜈? It is 
the magnitude of the 
neutrino momentum, but 
that is the same as the 
magnitude of the muon 
momentum

m2
µ “ m2

⇡ ´ 2m⇡|pµ|

|pµ| “ m2
⇡ ´ m2

µ

2m⇡



45Griffiths 3.4

pp→pppp What is the threshold energy 
for this process?

At threshold, all four final state 
objects are at rest (if they were 
not at rest we could reduce the 
CoM collision energy and 
reduce their momentum)

p1=(E,p) p2=(m,0)
Initial

pp1 ` p2q2 “ pE ` mq2 ´ p2

Invariant:



46Griffiths 3.4

All at rest
Final

pp1 ` p2q2 “ pE ` mq2 ´ p2
Invariant:

pp3 ` p4 ` p5 ` p6q2 “ p4mq2 “ pp1 ` p2q2

p1=(E,p) p2=(m,0)
Initial

16m2 “ pE ` mq2 ´ p2

p2 “ E2 ´ m2



47Griffiths 3.4

16m2 “ pE ` mq2 ´ p2 p2 “ E2 ´ m2

16m2 “ E2 ` 2mE ` m2 ´ E2 ` m2

14m2 “ 2mE Ñ E “ 7m

p1=(E,p) p2=(E,-p)
Initial

What if we didn’t fire at a stationary 
target?

pp1 ` p2q2 “ p2Eq2 ´ pp ` ´pq2 “ 4E2

16m2 “ 4E2 Ñ E “ 2m



48Huge advantage to colliding beam machines

In this example, have to give protons a 
lot more kinetic energy for the fixed 

target version! Of course, the accelerator 
for the beams is much more complex :)



49GZK cutoff

Greisen–Zatsepin–Kuzmin: Over long 
enough distances, high-energy cosmic 
rays coming from the Universe should 
interact with the cosmic microwave 
background

http://
www2.astro.psu.ed
u/users/nnp/cr.html

http://www2.astro.psu.edu/users/nnp/cr.html
http://www2.astro.psu.edu/users/nnp/cr.html
http://www2.astro.psu.edu/users/nnp/cr.html


50GZK cutoff

At threshold, pion and proton in final state 
are at rest and their momenta are zero (and 

energies equal to their masses)
2p� ¨ pp “ m2

⇡0 ` 2m⇡0mp

At threshold, have a head-on collision. Assume 
highly relativistic particles and we get...

� ` p Ñ p⇡0

p� ` pp “ pp1 ` p⇡0

pp� ` ppq2 “ ppp1 ` p⇡0q2

p2� ` p2p ` 2p� ¨ pp “ p2p1 ` p2⇡0 ` 2p⇡0 ¨ pp1

m2
p ` 2p� ¨ pp “ m2

p ` m2
⇡0 ` 2p⇡0 ¨ pp1

2p� ¨ pp “ m2
⇡0 ` 2p⇡0 ¨ pp1



51GZK cutoff

2p� ¨ pp “ m2
⇡0 ` 2m⇡0mp

Head-on collision with energies >> mp

p� “ pE� , E� , 0, 0q
pp “ pEp,´Ep, 0, 0q

2pp ¨ p� “ 2EpE� ´ 2p´EpqE� “ 4EpE�

Want to solve for unknown cosmic rate proton 
energy. Photon energy is  
CMB (6x10-4 ev). Plug in and we get ~2x1020 ev

� ` p Ñ n⇡`Similarly have



52GZK cutoff
Of course, we used an “average” CMB photon, and 
ignored a full calculation of the kinematics (which 
goes through delta resonances) and assumed 
protons. Nevertheless, distribution doesn’t go to zero! 
Where are these sources coming from? Nearby 
sources? Or new physics?

http://
www2.astro.psu.ed
u/users/nnp/cr.html

http://www2.astro.psu.edu/users/nnp/cr.html
http://www2.astro.psu.edu/users/nnp/cr.html
http://www2.astro.psu.edu/users/nnp/cr.html


53Fun thing to google



54And on that note, some homework

Griffiths 3.3, 3.4, 3.6, 3.15, 3.16, 
3.17, 3.25 (good for you to start 
getting familiar with the PDG, I 
suspect) 

Also: At the HERA collider, 27.5 
GeV electrons collided head-on 
with 920 GeV protons. What 
was the center of mass energy?


