KATRIN Neutrino Experiment

Based on the report by: M. Aker, et al.

Neutrino Background

- Most abundant particle
- Lightest subatomic particle to have mass (very small though)
- Fundamental particle

 ν_{τ}

3 flavors: Tau neutrinos, electron neutrinos and mu neutrinos

 u_e u_{μ}

What is KATRIN?

- Karlsruhe Tritium Neutrino experiment
- Designed to directly measure effective $m_{ar{
 u}_e}$
- Uses kinematics of Beta-decay to measure $m_{ar{
 u_e}}$

Tritium Beta-Decay Formula

$$(T \rightarrow {}^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e})$$

- Why Tritium?
- Relatively short half-life of 12.3 years
- Well-known theoretical representation
- Low endpoint of 18.6 keV

First Tritium Campaign

- To control rate of source stability, these parameters were closely monitored
 - 1. Beam tube temperature
 - 2. Buffer vessel pressure
 - 3. Isotopic purity

Spectral Measurement

- Obtained by applying different retarding energies to spectrometer
- Then counting the number of transmitted Beta-electrons with focal plane detector
- Applied in an increasing, decreasing, and random voltages
- Scans last from 1-3 hours
- Total of 122 scans and 168 hours, resulting in about 0.6 million electrons

$$t_{scan} = \Sigma t(qU_i)$$

Spectral Measurement (continued)

Beta-Decay Tritium Spectrum

$$R_{\text{calc}}(qU_i) = A_{\text{s}} N_{\text{T}} \int_{qU_i}^{E_0} R_{\beta}(E) f_{\text{calc}}(E, qU_i) dE + R_{\text{bg}}$$

Derived in "Analysis of KATRIN Neutrino Experiment"

Differential Beta-Electron Spectrum and Experimental Response Function

$$R_{eta}(E)=C\cdot F(E,Z')\cdot p\cdot (E+m_{
m e})\cdot (E_0-E)\sqrt{(E_0-E)^2-m_V^2}$$
 Where $C=rac{G_F^2}{2\pi^3}\cos^2\Theta_C|M_{
m nucl}|^2$ and $m_V^2=\sum_{i=1}^3|U_{ei}|^2m_i^2$

$$f_{\rm calc}(E,qU_i) = \int_0^E T(E-\varepsilon,qU_i) \left(P_0 \, \delta(\varepsilon) + P_1 \, f(\varepsilon) + P_2 \, (f \otimes f)(\varepsilon) + ... \right) \, \mathrm{d}\varepsilon$$

Observed Endpoint

 Setting the beginning of the spectra at 0, we need to find the cut-off energy of our fit:

$$E_0^{\rm fit} = E_0 + \boldsymbol{\Phi}_{\rm WGTS} - \boldsymbol{\Phi}_{\rm MS}$$

Data Selection

• Scan Selection: 40 scans were excluded due to parameter testing, 82 usable

Pixel Selection: Some pixels were excluded (past detector range)

• Fit Range Selection: Data past $qU^{\min} = E_0 - 100 \,\mathrm{eV}$ were irrelevant

Fitting Procedure

- Single-scan fit: to observe time-dependence of fit parameters
- Stacking: counts in sub-scans added to construct high statistics single spectrum but relies on high reproducibility of individual electron retarding energy settings
- Appending: eliminates the need for high producibility of individual electron retarding energy settings
- Single-pixel fit: to observe spatial dependence of fit parameters
- Uniform fit: detector pixels can be averaged because of transmission function to make calculations easier (but worsens energy resolution)
- Multi-pixel fit: all pixel dependent spectra are fitted simultaneously

Treatment of Systematics

Nuisance Parameters: can treat uncertainties as systematic parameters

 Covariance Matrix: spectrum prediction is run thousands of times while changing system parameters each time to extract variances

Monte Carlo Propagation: fit is varied instead to extract variances

Maximum Error Estimation: shift method

Systematic Uncertainties

- Systematic Budget
- Column Density
- Tritium Concentration
- Energy-loss Function
- Magnetic Fields
- Electric Potentials
- Final-State Distributions
- Detector Efficiency
- Background

Systematic Uncertainties (continued)

Effect	Description	1 σ uncertainty	1σ uncertainty of fitted endpoint (eV)
Source scattering	Column density	3 %	0.13
	Inel. scat. cross-section	2 %	
DT concentration fluctuation	For single sub-scan (60 s)	1.5 %	
	For all scans combined (40000 s)	0.08%	0.03
Energy-loss function	Excitation peak position P_1	0.017 eV	0.11
	Ionization peak position P_2	$0.18\mathrm{eV}$	
	Excitation peak width W_1	$0.05\mathrm{eV}$	
	Ionization peak width W_2	$0.13\mathrm{eV}$	
	Normalization A	$0.15{\rm eV^{-1}}$	
Final-state distribution	Normalization	1 %	0.08
	Ground-state variance	1 %	
	Excited-states variance	3 %	
Magnetic fields	Source	2.5 %	0.03
	Analyzing plane	1 %	
	Maximum field at pinch	0.2 %	
Detector efficiency	Retarding potential dependence	0.1 %	0.03
Background	slope	5 mcps/keV	0.02
Gas density profile	on/off		< 0.01
Theoretical correction	on/off		< 0.01
Stacking	on/off		< 0.01
Total systematic uncertainty			0.19
Statistical uncertainty			0.17
Total uncertainty (stat. and syst.)			0.25

Results

• Combining all data of golden scans, treating golden pixels as single effective pixel, and performing a fit at $qU^{\min} = E_0 - 100\,\mathrm{eV}$ we get

$$E_0^{\text{fit}}(\text{DT}) = 18574.39 \pm 0.17(\text{stat}) \pm 0.19(\text{sys}) \text{ eV}$$

= $18574.39 \pm 0.25(\text{tot}) \text{ eV}$,

Results (continued)

Now that the ends of our spectra have been measured our best fit value is

$$m_{\nu}^{2} = (-1.0 ^{+ 0.9}_{- 1.1}) \text{ eV}^{2}$$

 $\sigma_{stat} = 0.97 \text{eV}^{2}$
 $\sigma_{sys} = 0.32 \text{eV}^{2}$

Works Cited

M. Aker, et al. "First Operation of the KATRIN experiment with Tritium." Karlsruhe Institute of Technology. 13 Sept. 2019. Research Publication. 7 Feb. 2022.

M. Aker, et al. "An Improved Upper Limit on the Neutrino Mass from a direct Kinematic Method by KATRIN." Karlsruhe Institute of Technology. 13 Sept. 2019. Research Publicaiton. 7 Feb. 2022.

M. Aker, et al. "The KATRIN Neutrino Mass Results: An alternative Interpretation." Karlsruhe Institute of Technology. 21 Nov. 2021. Research Publication. 7 Feb. 2022.