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KATRIN Neutrino Experiment

Based on the report by: M. Aker, et al.



Neutrino Background

Most abundant particle

Lightest subatomic particle to have mass (very small though)
Fundamental particle

3 flavors: Tau neutrinos, electron neutrinos and mu neutrinos




What is KATRIN?

e Karlsruhe Tritium Neutrino experiment
e Designed to directly measure effective my,
e Uses kinematics of Beta-decay to measure m,;,




Tritium Beta-Decay Formula

(T = 3Het+e ++v,)

Why Tritium?

Relatively short half-life of 12.3 years
Well-known theoretical representation
Low endpoint of 18.6 keV
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First Tritium Campaign

e To control rate of source stability, these parameters were closely monitored
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Spectral Measurement

e Obtained by applying different retarding energies to spectrometer

e Then counting the number of transmitted Beta-electrons with focal plane
detector

e Appliedin anincreasing, decreasing, and random voltages

e Scans last from 1-3 hours

e Total of 122 scans and 168 hours, resulting in about 0.6 million electrons

tscan = z375(qU'z)
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Beta-Decay Tritium Spectrum

Eg
Reac(qUi) = ANy / Rp () fouc (E,qU;) dE + Ry
quUi

e Derived in “Analysis of KATRIN Neutrino Experiment”




Differential Beta-Electron Spectrum and
Experimental Response Function

Re(E)=C-F(E,Z')- p- (E+me)- (Eo—E)/ (Eo — E)? —m}

2
Where €= 75 cos?@c|Mpual* and m=Y3  |U|*m?

fealc (EsqUs) =/OE T(E—¢€,qU;) (Po(e)+Pif(e)+ BRL(fRf)(e)+...) de




Observed Endpoint

e Setting the beginning of the spectra at 0, we need to find the cut-off energy of
our fit:

El' = Ey + dwars — Puis




Data Selection

e Scan Selection: 40 scans were excluded due to parameter testing, 82 usable

e Pixel Selection: Some pixels were excluded (past detector range)

e Fit Range Selection: Data past gqU™r = E;, — 100eV were irrelevant




Fitting Procedure

e Single-scan fit: to observe time-dependence of fit parameters

e Stacking: counts in sub-scans added to construct high statistics single spectrum but
relies on high reproducibility of individual electron retarding energy settings

e Appending: eliminates the need for high producibility of individual electron retarding
energy settings

e Single-pixel fit: to observe spatial dependence of fit parameters

e Uniform fit: detector pixels can be averaged because of transmission function to make
calculations easier (but worsens energy resolution)

Multi-pixel fit: all pixel dependent spectra are fitted simultaneously




Treatment of Systematics

e Nuisance Parameters: can treat uncertainties as systematic parameters

e Covariance Matrix: spectrum prediction is run thousands of times while
changing system parameters each time to extract variances

e Monte Carlo Propagation: fit is varied instead to extract variances

Maximum Error Estimation: shift method
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Systematic Uncertainties
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Systematic Uncertainties (continued)

Effect Description 1 o uncertainty 10 uncertainty of fitted
endpoint (eV)
Source scattering Column density 3% 0.13
Inel. scat. cross-section 2%
DT concentration fluctuation For single sub-scan (60 s) 1.5%
For all scans combined (40000 s) 0.08 % 0.03
Energy-loss function Excitation peak position P 0.017eV 0.11
Ionization peak position P> 0.18eV
Excitation peak width W; 0.05eV
Ionization peak width W, 0.13eV
Normalization A 0.15ev~!
Final-state distribution Normalization 1% 0.08
Ground-state variance 1%
Excited-states variance 3%
Magnetic fields Source 25% 0.03
Analyzing plane 1%
Maximum field at pinch 0.2%
Detector efficiency Retarding potential dependence 0.1% 0.03
Background slope 5 mcps/keV 0.02
Gas density profile on/off <0.01
Theoretical correction on/off < 0.01
Stacking on/off <0.01
Total systematic uncertainty 0.19
Statistical uncertainty 0.17
Total uncertainty (stat. and 0.25

syst.)




Results

e Combining all data of golden scans, treating golden pixels as single effective
pixel, and performing a fit at gqu™i» = E, — 100eV We get

E{Y(DT) = 18574.3940.17(stat) +0.19(sys) eV
= 18574.39 +0.25(tot) eV,




Results (continued)

e Now that the ends of our spectra have been measured our best fit value is

18573.9

mp = (1.0 £ 1]) eV?
Ostat — 0976V2
Osys = 0.32eV?
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