On to Feynman calculus B

Recall that most of the particles we play with are
unstable. Want to calculate their decay rate (I'),

the probability per unit time of decay

AN = —T' Ndt Number of particles
_ that make it to N(t) and
N(t) = N(0)e "
() (D)e decay at N(t+dt)

\
N(t +dt) = Nge TUFd) — Ny~ Tte—ldt

e ~1+ax—e P9 o1 -Tdt
N(t + dt) = Noe ' (1 — Idt) |
N(t) = N(t +dt) ~ Noe ' — Nge™'* (1 = T'dt) =|Nge "'T'dt




What is the average lifetime?

Average lifetime Number of
\ particles that
t (e="'Idt) make it to N(t)
. and decay at
T f to—Tt 11 N(t+dt):
’ —1 Noe_Ftht
w=tdv=e ttdt, du = dt,v = ?e —lt
, o © 1 So, fraction that
=T [_—e—“] ~-T J —eTtq¢  decay at
T 0 o L N(t+dt) is then
0]
_ T L _ l e UTdt
" | 7T

So average lifetime = 1/T
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Decays

Typically define partial widths I'i which are defined

as the rates for specific decays. The total decay
rate is the sum of the partial widths, and the

lifetime is given by «:

= )T, Iy
~ BR(i) = =
1

T

The branching ratio (BR) is the fraction of all
decays to that go to a specific final state



Scattering

We're also very often interested in the collision
between two objects. Collisions can be:

A+B—A+B (elastic, no energy lost)
A+B—Other (inelastic, energy “lost” in the form of
conversion to other particles)

Typically we refer to the cross section (o) for a
collision process. A natural way to think of a
collision that relates to classical scattering theory.
Units of area



Cross sections

Sometimes in particle physics we think of
differential cross sections (do/dX), which refer to
how often a process occurs per unit of X

X can be energy (ex: cross section for collision to
produce a particle with a certain energy)

X can be number of objects (ex: how often does a
collision produce a process with a certain number
of jets)

X can be angle (ex: cross section where collision

decay products travel in a certain direction)



Cross section units

In particle physics, we typically use “barns” (b).
1 barn =10-28 m? (typically ~area of Uranium nucleus)
If you believe Wikipedia and its references ...

Etymology (ediy

The etymology of the unit barn is whimsical: during wartime research on the atomic bomb, American physicists at Purdue University needed a
secretive unit to describe the approximate cross sectional area presented by the typical nucleus (10722 m?) and decided on "bam." This was
particularly applicable because they considered this a large target for particle accelerators that needed to have direct strikes on nuclei and the
American idiom "couldn't hit the broad side of a bamn"?! refers to someone whose aim is terrible. Initially they hoped the name would obscure
any reference to the study of nuclear structure; eventually, the word became a standard unit in nuclear and particle physics. Pl

1 barn is a huge number in particle physics!



Cross sections at the LHC

ndard Model Total Production Cross Section Measurements status: March 2019
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Standard Model Total Production Cross Section Measurements status: March 2019
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Theory ATLAS Preliminary

9 Measurement

Q pp—=X
7 TeV, 20 ub™", Nat. Commun. 2, 463 (2011)

8 TeV, 500 ub™', Phys.Lett. B761 158 (2016)
13 TeV, 60 ub™", Phys. Rev. Lett. 117 182002 (2!
I pp—>Wi pp — ZIy*
7 TeV, 4.6 tb™', arXiv:1612.03016 (for Z/W) 8
TeV, 20.2 tb™", JHEP 02, 117 (2017) (for 2)
13 TeV, 81 pb”', PLB 759 (2016) 601 (for W)
13 TeV, 3.2 1b™", JHEP 02, 117 (2017) (for 2)
3 pp—tt
7 TeV, 4.6 tb™", Eur. Phys. J. C 74:3109 (2014)
8 TeV, 20.3 fb™", Eur. Phys. J. C 74:3109 (2014)
13 TeV, 3.2 tb™, arXiv:1606.02699
3 pp—1q
7 TeV, 4.6 tb™', PRD 90, 112006 (2014)
8 TeV, 20.3 fb, arXiv:1702.02859
13 TeV, 3.2 fb", arXiv:1609.03920
Q pp—H
7 TeV, 4.5fb™ Eur. Phys. J. C76 (2016) 6
8 TeV, 20.3 fb™", Eur. Phys. J. C76 (2016) 6
13 TeV, 36.1 fb™", ATLAS-CONF-2017-047
& pp— WW
7 TeV, 4.6 tb™', PRD 87, 112001 (2013)
8 TeV, 20.3 fb™", JHEP 09 029 (2016)
13 TeV, 3.2 fb'1, arXiv:1702.04519
¥ pp— WZ
7 TeV, 4.6 tb™, Eur. Phys. J. C (2012) 72:2173
8 TeV, 20.3 fb™", PRD 93, 092004 (2016)
13 TeV, 3.2 tb™, Phys. Lett. B 762 (2016)
X pp—2z
P B 7 TeV, 4.6 tb™, JHEP 03, 128 (2013)
14 8 TeV, 20.3 fb™', JHEP 01, 099 (2017)

13 TeV, 36.1 fb™', ATLAS-CONF-2017-031
Vs [TeV]

Small but non-zero dependence
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T TTTIITH

—

o
—_
—_

pp — X IO O

—
o
o

pp — W =
pp = Z/y* o

¥

—
(@]
SN

10°

Total production cross section [pb]

H <

pp — tt
pp — iq

pp = H
P 2, W

102

o

10°

K &8s d

@ B & B H
4 ¥ % 4

ppx_0>.1WZ

PR3

6

T A RRTTT S IRTTI AR RTTIT ANSERTTTT MRTERTTT I |||/WW ol 4

AN
m_
—
o
—
N



Limits on processes instead

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019 [Ldt=(3.2-139)fb™! V5=8,13Tev
Model t,y Jetst ET™ [rdi] Limit Reference
L T T T T T T —
ADD Gkk +g/q Oe,pu 1-4j Yes  36.1 Mp 7.7 TeV n=2 1711.03301
2 ADD non-resonant yy 2y - - 36.7 Ms 8.6 TeV n=3HLZNLO 1707.04147
.S  ADDQBH - 2j - 37.0 My 89TeV n=6 1703.09127
2  ADDBH high ¥ pr >leu >2j - 32 | Mg 8.2 TeV n=6, Mp = 3TeV, rot BH 1606.02265
g ADD BH multijet - >3] - 36 | My 9.55TeV n =6, Mp =3TeV,rot BH 1512.02586
S RS1 Gkx — yy 2y - - 36.7 Gkk mass 4.1 TeV k/Mp =0.1 1707.04147
®  Bulk RS Gk - WW/2Z multi-channel 36.1 Gk mass 2.3 TeV k/Mp; =1.0 1808.02380
< Bulk RS Gk —» WW — qqqq Oe,u 2J - 139 Gyk mass 1.6 TeV k/Mp; = 1.0 ATLAS-CONF-2019-003
W BukRS gxk — tt Teu >1b>1J2) Yes 361 |8k mass 3.8 TeV T/m=15% 1804.10823
2UED / RPP leuy 22b,2>23) Yes 36.1 KK mass 1.8 TeV Tier (1,1), B(AMD — ¢t) =1 1803.09678
SSM Z' — ¢t 2epu - - 139 Z’ mass 5.1 TeV 1903.06248
» SSM Z" - 17 27 - - 36.1 Z’' mass 2.42 TeV 1709.07242
8 Leptophobic Z” — bb - 2b - 36.1 Z' mass 2.1 TeV 1805.09299
8 Leptophobic Z’ — tt lepu >1b,>1J/2) Yes 36.1 Z’ mass 3.0 TeV rm=1% 1804.10823
Q SSM W’ — ¢v lenu - Yes 139 W’ mass 6.0 TeV CERN-EP-2019-100
S SSMW' -1y 17 - Yes 361 | W mass 3.7 TeV 1801.06992
§ HVTV' - WZ- qgqqqmodelB  0e,u 2J - 139 |V mass 3.6 TeV gv =3 ATLAS-CONF-2019-003
(0] HVT V' - WH/ZH model B multi-channel 36.1 V’ mass 2.93 TeV gv =3 1712.06518
LRSM Wg — tb multi-channel 36.1 Wg mass 3.25 TeV 1807.10473
LRSM Wg — uNg 2u 1J - 80 Wg mass 5.0 TeV m(Ng) = 0.5TeV, g1 = gr 1904.12679
— Cl qqqq - 2j - 37.0 A 21.8TeV 7, 1703.09127
o Cl ttqq 2e,pu - - 36.1 A 40.0 TeV 7, 1707.02424
Cl tttt >leu 21b21j Yes 36.1 A 2.57 TeV |Cat| = 4m 1811.02305
Axial-vector mediator (Dirac DM) Oeu 1-4j Yes 36.1 Mpned 1.55 TeV 84=0.25, g,=1.0, m(y) = 1 GeV 1711.03301
S Colored scalar mediator (Dirac DM) 0 e, 1-4j Yes 36.1 Mped 1.67 TeV g=1.0, m(x) =1 GeV 1711.03301
Q vy EFT (Dirac DM) Oe,p 14,<1j  Yes 32 | M. 700 GeV m(x) < 150 GeV 1608.02372
Scalar reson. ¢ — ty (DiracDM) 0-1e,u  1b,0-1J Yes 36.1 my 3.4 TeV y=0.4,1=0.2, m(y) = 10 GeV 1812.09743
Scalar LQ 1t gen 12e >2j Yes 36.1 LQ mass 1.4 TeV =1 1902.00377
(¢} Scalar LQ 2" gen 1.2u >2j Yes 36.1 LQ mass 1.56 TeV B=1 1902.00377
= ScalarLQ 3" gen 27 2b - 36.1 LQ; mass 1.03 TeV B(LQY — br) =1 1902.08103
Scalar LQ 3™ gen 0-1eu 2b Yes 36.1 LQ‘; mass 970 GeV B(LQ§ - tr) =0 1902.08103
VLQ TT — Ht/Zt/Wb+ X  multi-channel 36.1 T mass 1.37 TeV SU(2) doublet 1808.02343
>0 VLQ BB —» Wt/Zb+ X multi-channel 36.1 B mass 1.34 TeV SU(2) doublet 1808.02343
T & VLQ T5/3Ts/3| Ts;3 > Wt + X 2(SS)/23eu >1b,21j Yes 36.1 Ts/3 mass 1.64 TeV B(Ts3 > Wt)=1, c(Ts;3Wt)=1 1807.11883
% g_ vLQY - Wb+ X leu 21b21] Yes 36.1 Y mass 1.85 TeV B(Y - Whb)=1, cr(Wb)=1 1812.07343
VLQ B - Hb+ X Oepu,2y >21b,>1j Yes 79.8 B mass 1.21 TeV kg=0.5 ATLAS-CONF-2018-024
VLQ QQ — WqWgq len >4j Yes 203 [lQasseooicev 1509.04261
5 @ Excited quark q* — qg - 2j - 139 q* mass 6.7 TeV only u* and d*, A = m(g*) ATLAS-CONF-2019-007
L5 Excited quark g* — qy 1y 1j - 36.7 q* mass 5.3 TeV only u* and d*, A = m(q") 1709.10440
E g Excited quark b* — bg - 1b,1j - 36.1 b* mass 2.6 TeV 1805.09299
w ‘:q:) Excited lepton £* 3eu - - 20.3 A=3.0TeV 1411.2921
Excited lepton v* 3eput - - 20.3 A=16TeV 1411.2921
Type Ill Seesaw leu >2j Yes 79.8 N° mass 560 GeV ATLAS-CONF-2018-020
LRSM Majorana v 2u 2j - 36.1 Ngr mass 3.2 TeV m(Wg) =4.1TeV, g, = gr 1809.11105
> Higgs triplet H** — ¢¢ 2,3,4 e, 1 (SS) - - 36.1 H** mass 870 GeV DY production 1710.09748
ES Higgs triplet H** — (1 3eut - - 20.3 DY production, B(H;* — (1) =1 1411.2921
(¢} Multi-charged particles - - - 36.1 multi-charged particle mass 1.22 TeV DY production, |g| = 5e 1812.03673
Magnetic monopoles - - - 34.4 monopole mass 2.37 TeV DY production, |g| = 1gp, spin 1/2 1905.10130
Vs=13 TeV Vs=13TeV MR | MR | L L MR R | L L PR
partial data full data 107! 1 10

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/

Mass scale [TeV]



Luminosity

Luminosity defines how many particles we have to
collide. More specifically, the number of particles per
unit time per unit area. We often think of the
iInstantaneous luminosity, which is the luminosity at

any one given time

Peak Luminosity per Fill [10% cm2 s71]

- ATLIAS Onlilne Lumlinosity
25_— e LHC Stable Beams
" Peak Lumi: 21.0 x 10®* cm?s™
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- | e ° oo
5 e
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A >—ie Slbe oo | 1 .
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Luminosity

We also think of the integrated luminosity over time,
which when multiplied by a cross section, tells us how
many events of a certain process we expected to
produce.

Example: ATLAS collected ~140 fb-! of data at energy
of 13 TeV. The cross section for Higgs bosons at 13
TeV is ~50 pb = 50,000 fb, so ~7.5 million Higgs
bosons were produced in that data set at ATLAS

The branching ratio for Higgs bosons to pairs of
photons is 0.0023, so ~17,000 Higgs bosons were
produced in the diphoton final state



Fermi’'s Golden Rule

Have you seen this before in Quantum Mechanics?
We’'ll need the relativistic version of it. If not, suggest

you look it up

Fermi was a smart man (hard to think of someone
with more things named after him). He told us that the
rate for a process to occur is equal to the square of
the quantum mechanical amplitude (aka the matrix
element), multiplied by the density of states



But first, an aside on Dirac Delta functions

Dirac was also a smart man (maybe fewer things
named after him than Fermi, but not by that much)

S@) = o 1T Sw—a)= o L0
7(0)6(2)
f_ I — j / 7(0) f_OOé(:c)daz:f(m



Aside on Dirac Delta functions

J f(z)d(kx)dx =7
z = kx,dr = dz/k

JOO f(x)d(kx)dx = %JPZ:O@ f(z/k)o(z)dz =
L[ MO (% 50, _ FO

VR

Note that here, limits of integration go from -infinity to
+infinity only if k is positive



What if k is negative?

f f(x)o(kx)dx =7
z = kx,dx = dz/k (k negative)




What about any arbitrary function?

Any arbitrary function with potentially any
number of zeros.

0(g(x)),g(x;) =0,1=1,2,3...

1 2 N

g(x) = g(z;) + (x — x3)g" (x;) + §(x —x;)°9" (z;) + ...

If Xi something other than \

zero, this just shifts the  g'(xi) is “k” in the previous
delta function slide



What about any arbitrary function?

For one zero:

ntotal:  s(g(a)) = 3, ot —



Heaviside step function

O(x) =1(x > 0)
db
What does he Wlklpedla unvge of |
look like to you? | I|ver HeaV|S|de

/r’i :.'., - '..

G

.






Griffiths problems A1 and A3 together

3
A.la) f (22° + Tx + 3)0(x — 1)dx
0

A.1b) JS In(1 + z)d(m — x)dx

A.3)Simplify d(sin x)



Back to Fermi

Fermi's Golden Rule: nothing to do with how
you should treat others (that's a different
Golden Rule). It tells us that the rate for a

process (a given collision or decay) is a product
of the square of the matrix element (dynamics
specific to the theory of the forces at play) and
the phase space (recall that things like to
happen the more phase space there is for it to
happen)



On the phase space

For example, let's begin by considering
1-2+3+4+....n
In other words, object 1 decaying to
objects 2, 3, 4... (n-1 total particles)
Up to some overall normalization, consider the
phase space of the jt" object as d*p;=d(p?)d?(pj)
Hopefully that makes some intuitive sense as a
definition of phase space?
But of course, the j'" object can’t just have any
arbitrary value of energy and momentum



Constraints on the phase space

1—-2+3+4+....n

he decay products have a definite mass. In other
words, pj? = m. Can enforce this in an integral

with a delta function, §(pj? - mj?

Don’t allow negative energy states of decay
productions, so pi®> 0. Can enforce this with
Heaviside function, 6( p;°)

Conserve energy and momentum. Can enforce

this with 8(p1-p2-p3-...pn)



Golden rule for decays

1—-2+3+4+....n

Normalization Matrix element squared (to
| be worked on later)

Decay Momentum/energy
rate \ ¢ conservation
'l
[ = le M (2m) 6% (p1 — p2 — P3.. — Pn) X
H 21 (p ) d'p;

(277')4\
On-shell fmal/E' : / Shase
>

products



Where did that come from, though?

Recall from basic QM: What is the
transition rate from state |i> to state |>,
given some interaction Hamiltonian (7g7)?

Given by TIt:
Ly = 27| Ty | p(E;) Matrix element
— (“transition”)
“— < fI)j >< jlH)i >
Ty =< fIH|i > + + ..
; E; — E;
dn |
p(E;) = JE Density of states
< £
_ (phase space)




We can rewrite phase space as:

dn
p(Ei) = | =0
dn dn
— = | —o(FE; — E)dE
dE £, de ( )




1d Boundary conditions in non-relativistic QM

Recall in a one
dimensional box that

boundary conditions
force quantization of

momentum



3d Boundary conditions in non-relativistic QM

Similarly, in 3
9. dimensions (if in a 3D
(P2: Py P2) = (na, 1y, m2)—  cube of length a on
each side, total
volume V)

What is the volume of
a state in momentum

space”? .
27 (27)3

&Pp = dpydp,dp, = | — | =

p Pz Py AP (a) e




Normalizing things

Common to normalize

to a particle per unit Bp;

volume, so that the dn; = (27)3

number of states for

ith particle Is

And then the total o H o Nﬁl d*p;
number of states is bt (23

Note that we “lost” the last dn;
because it is not independent (fixed,
due to momentum conservation)



Rewriting this a bit more nicely

We can add in the last missing d3pn by
iIncluding a delta function, which forces
momentum conservation (particle a is the

one decaying), and accounting for the
extra (21)3




Putting it together

For particle a decaying
to particles 1 and 2...

Ffz' — 27TJ|Tfi|25(Ea — E1 — Eg)dn

d°p1 d&’p
Ly = (2m)* f Ty:|°6(Eq — Erv — Eo) (QW)lg (%)23 0° (Pa — P1 — P2)




What about relativistic mechanics?

Recall that we normalized our transition matrix
element to one particle per unit volume.

What happens in another reference frame?
Perpendicular to direction of motion, nothing.

Parallel to direction of motion, we get a Lorentz
contraction of 1/y = m/E, therefore to be Lorentz
iInvariant our normalization must be proportional to
1/E (we choose 1/2E by Griffiths’ convention)



Why 2E and not E?

Our new Lorentz-
invariant phase
23 p; v space

Energy-momentum
relation delta function.
Is this clear?



So we can rewrite the phase space again

Now let’'s use 4-vector
notation




More on phase space

Let's take another look

at our Lorentz-invariant

phase space and

check that it really is Bp
Lorentz-invariant (27)32E

Let’s look at a transformation
along the z axis. What is the
phase space?

dp/ \ dp/
z d , = d z
dp. P pdpz

d°p’ = dpl,dp, dp’, = dp,dp,



More on phase space

dp/ \ dp/
z d , = d z
dp. Y pdpz

d’p’ = dpl,dp, dp’, = dp,dp,

P, =~(p: — BE),E' = ~(E — Bp.), E* = p. + p,, + p> + m’




OK, back to the golden rule... for decays

1—-2+3+4+....n

[ = J\MP (2m)*5* (p1 — p2 — P3... — Pn) X

Start with this delta function. We know that
pi* = (p°)*-p? 52 5 2 9
(p7 —m; ) = (( ) Pj m )

J
— (pY); = i\/Pj2+m2




Golden rule for decays




Golden rule for decays

6 ((p); —pi> —m3) = 50 [5 (p? — \/pf +m§) + 0 (p? + \/pf +m?)]

9( 0 042 2 2\ _ 6(p}) 0 5 2 0 f 2
(p;)d (@) —p3~ —mj) = 20 [5 (pj _\/Pj +mj) +0 (Wa)]

Heaviside forces p;° to
always be greater than O

0(p3)d ((p°); — p3* —mj) = ﬁ [5 (p? B \/p52 i m?)]



Golden rule for decays

1—-2+3+4+....n
r— f \W 27) 64 (py — o — Piees — Pr) X

d*p;
) =2

e
Delta picks out specific value for p;°,
So no need to integrate |

1
I' = o J |M\2(27T)454(p1 — P2 — P3..o|— Pn) X
m1 ¢
ﬁ , 0 (p] = /P +m2) d'p,
j=2

2p) (27)4




Golden rule for decays

1
FZ—J|M|2(27T)454(Z?1 P2 — P3... — Pp) X

le

2pY (2m)4

Make delta function
substitution

1
['= — 2(2m)* 6% (p1 — p2 — p3... — Pn
lef\w(w) (01— P2~ D~ D)

d oF
2\/p‘,2 +m?2 (2m)*

||’:]:



Golden rule for decays

1 2 4 ¢4
: - 2 5 - - e o o0 - n
r T f\/\/l\ (2m)%6%(p1 — p2 — P3-.. — Pn) X

d oF
2\/p‘,2 + m?2 (2m)*

||’:]:

And rearrange a bit

1
[ = f\/\/l! (27T)454(p1 P2 — D3... — Pn) X

2m1




Let’'s assume only two particles in final state

1—-2+3
I = (2m)% % - — Dn,
g | MP@)5 01— p2 = po = )%
1 d>ps 1 d°p3
24/P22 + m3 (27)° 24 /p32 + m3 (27)3
Rearrange...
[ = o [ IMP6 51— p2 = pa = )5
3272m, R
1 1

d°pad’ps
V/P2? + m3 \/ps? + m



More delta functions (a common theme)

6*(p1 — pa — p3) = (P} — py — p3)5°(P1 — P2 — P3)

Let’'s choose reference
frame where p1 Is at rest,
so p1=0 and p1 = (M1,0)

0% (p1 — p2 — p3) = (Y} — \/sz +m3 — \/P32 +m3)é° (P2 + Ps)

C Sy | MO8 e = )5 + )
1 1
V/P2? +m3 \/Ps? +m3

d3p2 d3P3



Continuing to work this out

p3=-p2 (had to be, due to conservation of

momentum if p1=0) \

1
= o | IMP30 \/p22+m —¢p3 +m3)5*(pa + pa)

327 m1

d’ P2d P3

\/P22+m2 Vps +mj3

= 25 \/ 2 \/ 2
9.2 mlf\/\/li P2” +m3 — 4/ P2® + m3)x

dP2

\/P22+m3 \/P22+m3



Almost there

1 2
b= 3272my J|M| \/p22 +my — \/p22 + m3)

sz

\/P22+mz Vp22+m3

Let’'s rearrange again

2_|_ 2_|_
r_ : J’M‘Z — \/P2? + m3 — /P2 mS)dSpg
32m4my \/p22 -+ m%\/pzz -+ m3

Stepping back, this is impressive but not surprising.
Only have integral over momentum of one particle
left for phase space (why not surprising?)!




Almost there

1 25(m1—\/p22+m%—\/p22+m§)
[ = 5 M|
32mmy \/p22 -+ mg\/pf -+ m%

Let’'s go to spherical coordinates, p2 = (r,0,9)
and d3p2=r4sin® dr d6 d¢

d3p2

Matrix element squared cannot be a function
of anything but |p2| anymore since object 1
was at rest and ps is just -p2 so angular
integrals can be easily done

fsin 0dOdo = 4n



Almost there

d3P2

1 25(m1—\/p22+m§—\/p22+m§)
I' = 5 |/\/l|
32mT4m \/p22 + m%\/pf + m%

Do substitution and angular integrals

1 ) _ 2 2 2 2
I — J ‘M(T)P (ml \/T + My \/T + mB) T2d7“
8mTm 12 4+ m2/r2 + m2

Let’'s make another substitution...

uz\/fr2+m§+\/fr2+m§




Almost there

u=\/r2+m§+\/r2+m§
1 5 . 2_|_ 2 2_|_ 2
I — J‘M(THZ (ml \/T my \/’I“ m3)’l°2d’l“
8mTm V12 4+ m2/r2 + m2
6(my — u)
r
\/TQ—I—m%\/rQ—Fm%

1

STm1

I' = 2dr

| 1M

d_u B r N r
dr /2 +m2 /1% + m?
du r(\/rz—l—m%—i—\/ﬂ—i—mg)
dr A2+ m3\/r2 + m2
d_u B ru
dr /12 +m3+/1r% + m?




Some more substitutions

I —

1
87Tm1

o(my — u)

M 2

J‘ (r) /T2 + m3A/r2 + m?
du U

dr /T2 + m34/r2 + m?

r2 + m2+/72 + m2
dr = du\/ 2\/ 5
ru

r2dr

1
87Tm1

r

J]/\/l(r)\zé(ml — u)adu

U=m-

' =




More on that delta function

r

_ 285 (ms — )
[= rp— J\M(r)\ d(my u)udu

_—

u=\/r2+m%+\/7“2+m§

my1 = A/7%2 +m3 + A/1% + m3
2

m? = r? +ms + r? —|—m§+2\/(r2 + m3)(r2 + m3)

U=m-1

What does
SR tell us?

ms — 2r* —mj —m; = 2\/(7“2 + m3)(r2 + m3)

mil + 4rt + mg + mgl — 4r2m% + 4r2m§ + 4r2m§ — 2m%m§ — Zm%mg + 2m§m§ =

4r* 4+ dmim; + 4r*m3 + 4r°m;

2,2 4 4 4 2,2 2, 2 2, 2
—4r°m{ + mj] + my + ms — 2mims — 2mims — 2msms = 0




Finalizing it

1
r=|ps| = Q—Tnl\/m‘ll + m5 + m3 — 2m3m3 — 2mim3 — 2mims3
F — |p| 5 ‘M‘Z
8Tmy

Note that matrix element factorizes (not
always possible, but a pretty nice result!)



What about scattering?

1 142>3+4
b= AE, F> J‘M\2(2W)454(P1 + P2 — P3 — pa)x

This is the rate, though not quite what
we're looking for. We are interested in
the cross section (o)




Scattering

If we assume one particle per unit volume,

then rate = (v1+v2)o, ie the faster the set of

objects 1 and 2 pass through each other, the
larger the rate

['=(vy +v2)o
I

V1 + U9

Be careful (of relative v1
and v2 minus signs) o=




So the cross section is ...

o = f\/\/l|2(27T)454(p1 + p2 — p3 — pa) X

- 2 2 0\ 4'p;
H 27T5(pj — mj)e(pj) (2)4

Looks a bit odd to have velocity there!
Can that at all be Lorentz invariant?

F = AFE 1 Eoy(v1 + v3) = 4E By (‘2—1‘ + ‘%‘) = 4 (Es|p1] + E1|p2|)
1 2

F2 = 16 (E§|p1|2 + E%|p2|2 + 2E1E2‘p1”p2|)



So the cross section is ...

In case where particles 1 and 2 are collinear
(p1 - p2) = E1E> + p1Pp2

Remember the extra minus sign here
(p1-p2)® = EYE3 + p1°p2” + 2E1 E>p1p2

F? =16 (E;3|p1|” + Ei|p2|® + 2F1 Ea|p1]|p2|)
F? =16 (E3|p1|® + Ef|p2|® + (p1 - p2)° — E{E3 — p1°p2°)
F? =16 |(p1 - p2)* — (Ef —p1°)(E3 — p2°)]
Lorentz ~ F? =16[(p1 - p2)° — mimj]

Invariant!
F = 4/ (p1 - p2)? — m3m3




So the cross section is ..

]‘ J 4 ¢4
o = IM|*(2m)* 6% (p1 + po — p3 — pa) X
4\/(]91 °p2) — m1m2

d4pj
H 218 (p? —m3)0(p?) )]

As before, 1d delta function is easy (and
rearranges some 2r’s). Heaviside enforces only

one solution
— E — \/p? + m2
1

o= !J\/l! 27T)454(p1 + p2 — P3 — Pa) X
4\/(191 - p2)? — mim3 J

4

1 d?> o8
L2 o O




Moving along with cross sections

1 f 4 ¢4
o — IM|?(2m)*6% (p1 + p2 — p3 — pa) ¥
4/ (p1 - p2)? — mim3

Let’s put back the earlier form for F

1

(27)*6* — p3 —
o = 4E1E201+02J‘M| )07 (p1 + p2 — p3 — P4a) X

dpj




Moving along with cross sections

1 1 1 1
F = —
4E1E2 V1 + U9 4E1E2 pl/El + pz/EQ
1 1
F = —

4 Eop1 + E1po

In Center of Mass frame, |p2| = |p1]

1 1
F =
4‘]?1’E1‘|‘E2
1
= M2 (2m)*6*(p1 + pa — p3 — pa) X
5 4|p1|(E1—|—E2)J‘ #(2m)*6% (p1 + p2 — p3 — p4a)

dpj

32\/pj —I—m



Let’'s combine some factors

B 1
~ 6472[ps|(Ey + By

O

| J\M\254(p1 + po — P3 — P4) X

4

1
H 2 2d3pj
\/Pj +m;

j=3

0
pszjz\/p?—l—m?

Let’s split up the 4d delta function

54 (p1 + p2 —p3 — pa) = 6(Ey + By — E3 — F4)8%(p1 + p2 — P3 — Pa)



Delta functions in action

6*(p1 +p2 —p3s —pa) = 6(E1 + By — E3 — E4)6°(p1 + P2 — P3 — P4)
0 __ _ 2 2
P} = E; = /p? + m

In CoM frame, we know that p1+p2 =0

6*(p1 +p2 —p3 —pa) = (B, + By — B3 — E,)6°(p3 + p4)

1
- 647T2’p1’(E1 + EQ)

O

f M25(E, + By — Bs — E3)0*(ps + i) x

1 1
d°p3d’pa
\V/P3 + mj\/p] +m3
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Delta functions in action

1
MPS(E) + By — E5 — E4)8° (p3 + pa) X
o = 647T2]p1](E1+E2 J| | 1 2 3 1)0°(P3 P4)

1 1
VP3 +m3 \/pi +mj
The 3D delta function enforces p3 = -p4

d*p3d*py

1 2
o = O(FE1 + FEy — Fys — F
6471-2‘291‘(E1‘|‘E2)J’M‘ ( 1 2 3 4)><

1 1
\/P3 + m3 \/p3 + m}

d3P3



Delta functions in action
1

o

J‘M|2(5(E1 -+ E2 — Eg — E4)><

1 1
5 2 2 2dp3
V/PE +m3 /P2 + m}

Recall that we had delta functions on E3
and E4 (the mass relations)

 64m2|p1[(Ey + E)

1
— M|*§(E, + E —\/2+ 2—\/2+ 2) x

7 647r2|p1|(E1+E2)f‘ OB By = g =P )
1 1

d
VDR rmiNpirm




Delta functions in action

1
- MPP5(Ey + By — £/p3 +m3 — /p3 +m3)x

7 647T2|p1|(E1+E2)J| OB+ Bz = y/p3 +mi = /Py )
1 1

\/P3 +m3 \/p3 + mj3

d3P3

The 3D delta function enforced p3 = -p4

1 2
— ME E _\/ 2 2 _\/ 2 2
o 647T2‘p1|(E1 ‘|‘E2) J‘M| ( 1+ L2 P3 ‘l‘mg P3 —|—m4)><
1 1

\/P3 +m3 A/p3 +mj

d3P3



As before, we change coordinate systems

do 1 5
_ S(Ey + By — /12 + m2 — A /72 + m2
a0 64772\p1|(E1+E2)J‘M| (Br + By = \Jr? +m3 — /12 + m3)




Evaluating the integral

do 1 5
— SE Eo — 2 2 _ 2 2
0 647r2\p1\(E1+E2)J|M| (B + Eo \/7“ + mj \/7“ + mg) X
1 1

/72 + m2 /12 + m?

r2dr

Same exact form as last ugly integral, so
nothing new here



Differential cross section

do 1 M[* |py]

dQ 6472 (E1 + E»)? |pi




On to (toy) theories of particle physics!

| think this is where Griffiths does a
really nice job. We won't dive into

QED, but will instead start with a
simpler theory.

Feynman’s calculus/his rules tell us
how to calculate the matrix elements
(why? we won’t be diving into QFT, so
for now please just accept them, as
unappealing as that might be)



Our toy theory

Our toy theory has
3 types of spin-0
particles, A, B and
C. Let's assume

A - that ma> mg +mc.
Here, Als
incoming, and B
and C are
outgoing. This is a
decay vertex




Our toy theory

B A
\./
Here we have
C A scattering
A+B—A+B (one

/\ example diagram)
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Feynman rules (1)

Label all incoming
and outgoing lines

— _— with p1, p2, ... Pn
B P Ps A Internal lines can
e go either way
S ‘T Use arrows to
> v keep track of what
P2 P4 is going in and out
A B (here this looks

trivial, but can be
| more tricky with
pVvSqlispure anti-particles)
convention!



Feynman rules (2)

Add factors of -ig
for each vertex,
specifying the
coupling constants



Feynman rules (3)

For each internal
line add a factor
for the propagator
(note that we don't
have to be on-shell
herel!)



Feynman rules (4)

(2m)*6*(p1 + q1 — ps3)

Impose
conservation of
energy and
momentum at
each vertex with
4d Dirac Delta
function (with
appropriate 2pi
normalization)



Feynman rules (5)

(2m)*6*(p1 + q1 — p3)

e /
B Pi . Ps A
\L\-.g/'/
) 1
C ‘Tqﬂ% "2, (2n)
— _
St
A B

Integrate over
4-momentum
of internal
lines with
appropriate
2pI
normalization
factor



Feynman rules (6)

(2m)*6*(p1 + q1 — p3)

—_— / i
B P o P A 1
\L\'.g/v/
i 1,
C Ay, @ —mE it "
— q1 —
St NG
A B

Cancel
remaining
delta function
and add a
factor of I, and
you have the
matrix
element



Feynman rules for decay of object A (1)

Label external (p)
and internal lines
(q) and draw
arrows. Here we
have no internal
lines



Feynman rules for decay of object A (2)

/ B
_— | P2
R P "9 Single factor of -ig
-
% for our one vertex

C



Feynman rules for decay of object A (3)

For each internal
line add a factor
for the propagator,
but we don’t have
one here! (It's nice
when things are
simple)



Feynman rules for decay of object A (4)

/ B
_— P2
P1 -9
A -
(27)46% (p1 — pa — ) P

Impose
conservation of
energy and
momentum at
each vertex with
4d Dirac Delta
function (with
appropriate 2pi
normalization)



Feynman rules for decay of object A (5)

/ B
_— P2
P -19
A -
%

Integrate over 4-
momentum of
internal lines with
appropriate

2pi normalization
factor (here,
none)



Feynman rules for decay of object A (6)

_r
7/ P2 b
_|g

pz—ps) %‘

Add factor of |
and cancel
remaining
delta function



Feynman rules for decay of object A

1 Tt
K > We're left only
P J with M = i(-ig) = g
A - \
(2m)*6* P2 — p3) p3
C
p| = S \/mA +mpy +mg — 2mAm% — 2mAmz, — 2mEimz,



Lifetime of object A




Let’s calculate matrix element for AA—BB

Leading order diagram (there are
others at higher order, as we’ll see)




453

AA—BB Rule 1

Label all incoming
and outgoing lines

— _— with p1, p2, ... Pn
A P s B Internal lines can
e go either way
s ‘T Use arrows to
> v keep track of what
P2 P4 is going in and out
A B (here this looks

trivial, but can be
more tricky with
anti-particles)



AA—BB Rule 2

Add factors of -ig
for each vertex,
specifying the
coupling constants



AA—BB Rule 3

For each internal
line add a factor
for the propagator
(note that we don't
have to be on-shell
here!)



AA—BB Rule 4

(2m)*6*(p1 + q1 — ps3)

Impose
conservation of
energy and
momentum at
each vertex with
4d Dirac Delta
function (with
appropriate 2pi
normalization)



AA—BB Rule 5

(2m)*6*(p1 + q1 — p3)

e /
A Pt . Ps B
—a_ Y
) 1
C Aqu% "2, (2n)
— _
SN
A B

Integrate over
4-momentum
of internal
lines with
appropriate
2pI
normalization
factor



AA—BB Rule 5, putting it together

(2m)*6*(p1 + q1 — ps3)

A P . 3 B




AA—BB Rule 5, simplification

1
2 () [ 8+ 0~ )82 — - o)
1 C

Integral is over 4-momentum of g+ but this gets
picked up by the Delta function. Let's use the first
one, SO Q1 = P3-p1



AA—BB Rule 5, simplification

(

2 9 54(]91 + ¢ —p3)54(p2 — q1 —p4)d4q1
qi — Mg

2! (") |
Integral is over 4-momentum of g1 but this gets
picked up by the Delta function. Let's use the first
one, so q1 = p3-p1 (note that this is true for each
component of g1, as we're using some notation
shorthand here)

(

(277)4(—92) 5 54(292 + p1 — p3 — pa)

(ps —p1)2 — Mg \

Conservation of p and E for total system



AA—BB Rule 6

(2m)"(—g )(p3 o m%é (pz><p3 — Pa)

Rule 6: cancel delta function (and 2pi)?
and multiply by i to get Matrix Element

(

M = i(2 4(_92) (pg —p1)2 . m%

2

M = 92 2
(pB_pl) — M




First complication for AA—BB scattering

This is not the only
diagram. There is
another similar
one with the same
initial state and the
same final state.
So they must be
added together, as
they interfere!



Second AA—BB diagram
Let’s work this out
together on the board

Same diagram
M — 9 except that p1

(p3 — p1)2 —mZ  connects to p4, not
to ps



Second AA—BB diagram

Does this look at all similar (notation-wise to your previous homework)?



So total AA—BB ME is

As in Griffiths, let’'s assume mc¢ Is zero to
simplify things, ma=mg=m

1 1

M = g* |
g _(ps—p1)2 (p4—p1)2_




AA—BB ME for toy with massless m¢

1
M = g°

1

P1 P2

> <

Use center of mass
reference frame, where

IP1|=Ip2], |P3|=|p4]
Since ma=mg this
means

(p3—p1)?2 (pa—p1)?

That clear?

IP1|=|p2|=|ps3|=|ps|=p E1=E2=E3=E4=E



AA—BB ME for toy with massless m¢

(ps —p1)* =P + D3 — 2ps - p1 = 2m” — 2E4E1 + 2ps - p1
(pa —p1)? = 2m? — 2E° + 2py - p1 = 2(E® — p°) —2E° + 2p4 - p1
(pa —p1)° = 2(E* — p*) —2E* + 2ps - p1 = —2p° + 2p4 - P1
(pa — p1)2 — —2p® — 2p“ cosf = —2p2(1 + cos )



AA—BB ME for toy with massless m¢

M=y [(Ps —11@1)2 " (P4 —1291)2]

(pa —p1)2 = —2p2(1 + cos )
(p3 —p1)2 = —2p2(1 — cosf)

-, 1 1
M=y [—2p2(1 — cos6) " —2p?(1 + cosd)
2
g 1 1
M= —2p? [(1 — cos0) " (1 +COS(9)]
g [(1+cosf)+ (1—cosb)
—2p? | (1 —cos®)(1 + cosh)

2
_ 9 2
M= —2p? [1 —(10826’]

M =

2

M 9

p2sin® 6




Differential cross section here

2 do

1 IM® |py]

B p2sin? 6 dQ 6472 (E1 + E2)? |pil

Infinite cross section
as 6—0

do 1 g*

dQ 6472 (2E)2ptsin® 6

pr| = |pil = |P]
E,=Fy=E
4

M=

p4sin® 6




We are very close except for one final thing

Here we have two instances of particle B in the
final state. For every s identical particles, we
add factor of 1/(s!) to account for this, or else we
have over-counted the phase space




The final differential cross section

do 1 1 g?
dQ) 216472 (2F)22 % ptsin* 4
do 1 g

dQ ~ 102472 E2p#sin® 0




What about beyond leading order
(From Giriffiths)

“Self-energy” diagrams

There are many of these. And
even more at higher order

Vertex correction
diagrams




The good thing...

Each vertex carries a factor of
“g” in the matrix element, so g2
for physical quantities. So
diagrams with extra vertices
should be sub-dominant
corrections, or so we hope




Griffiths’ suggested diagram to calculate

1.Label your p’'s and g's

2. Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra




Let’s try this one

1.Label your p's and g's

2. Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra ‘I




Let's try this one

ig)h i i i
—1
VG - mE a3 —m? i —mE af —m?

1.Label your p's and g's

2. Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra 1




Let's try this one
2

1 1 1 1
(_i9)4 2 2 2 2 9 2 92
dy —Mc 4y — My g3 —Mp gy — Me
(2m)* 6% (p2 + q4 — pa)(2m)* 0% (g2 + g3 — qu) (2m)*0* (1 — g2 — ¢3)(2m)*0* (p1 — q1 — p3)

1.Label your p's and g's

2. \Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra ‘I’




Let’s try this one

J(—ig)4 2 92 92 92 92 9 92 9
g — Mg 4y — MMy 43 —Mp 4y — Me

(2m)*0%(p2 + g1 — pa)(2m)*6* (g2 + g3 — q4)(27)*6* (g1 — @2 — q3)(2m)*0* (p1 — @1 — p3)
d'qr d'qx d'qs d'qs
(2m)* (2m)* (2m)* (2m)*
1.Label your p's and g's
2. \Vertex factors
3. Propagators
4. Momentum and Energy
conservation
5. Internal momentum
iIntegration
6. Cancel delta function
and add extra ‘I’




Let’'s combine / cancel terms

J(—ig)4 2 92 92 92 92 9 92 9
4y — Mg dy — My 43 —Mp gy — Mg

(2m) 6% (pa + q4 — pa)(27) 0% (g2 + a3 — qu) (27)* 0% (1 — g2 — q3) (27)*6* (1 — 1 — p3)
d4(11 d4Q2 d4(]3 d4(]4
(2m)* (2m)* (2m)* (27)?

94] 1 1 1 1
qi —m¢ g5 —m% q3 —m% qf — m,

6*(pa + q1 — 1) (g2 + 3 — 01)0* (q1 — @2 — ¢3)0*(p1 — @1 — p3)d*qud*qod*qzd* qu

Now let’'s use those delta functions



Delta functions to the rescue

4J 1 1 1 1
g
qi — Mg g5 —m?% g3 —m% qf — mg,

6*(pa + g1 — 1) (g2 + g3 — 02)0* (@1 — g2 — q3)0* (p1 — @1 — p3)d*qud*qod*qzd* qu

First eliminate Q-

4J 1 1 1 1
g
qZ—m% q%—mﬂqg—m% (pl—p3)2—m20

6 (pa + qa — p1)0*(q2 + g3 — q1)0* (p1 — p3 — q2 — q3)d* qod* qzd " qu
Now Q4
1

1
2

1 1
4
f (pa — p2)? — m% g5 —m?% ¢35 —m% (p1 — p3)? —m%

6*(q2 + q3 + p2 — pa)d*(p1 — p3s — q2 — q3)d*qad* g3



Delta functions to the rescue

4J 1 1 1 1
g
(pa = p2)? = mé& a3 —m3 a5 —mp (p1 — p3)® —mi;

6*(q2 + g3 + p2 — pa)d*(p1 — p3s — g2 — q3)d* qad* g3
Now eliminate g2

4J 1 1 1 1
g
(pa — p2)? — m% (p1 —p3s —q3)? — mi q% — WQB (p1 — p3)* — WQC

6*(p1 — p3 — q3 + q3 + p2 — pa)d g3

Rearrange

1 1 1 1

4 4 4

9 0"(p1 +p2 —p3 —pa)d g3
J(m —p2)? —m¢ (p1 —ps — q3)* —m% g5 —mp (P — p3)? — M, ( )



A bit more rearranging

94] 1 1 1 1 5+ !
p1+Dp2—p3s —pa)dq
(ps—p2)2 —m2 (p1—p3s —q3)2 —m2 2 —m% (p1 — ps)2 —m2 02 PV

Delta function implies (ps-p2) = (p1-p3)

4 ( 1 1 1 1 54( N )d4
P1 T P2 —P3 — P4 q3
J (p1 —p3)2 - mzc (pl — P3 — Q3)2 — m,%; q§ — m2B (pl —p3)2 - m?;

2
r 1 1 1
4 4
g &4 p1+p2 —p3 —pa)dq
((p1 —p3)? — m%) (p1 — p3 — q3)? —mi q3 mB ( ’ D4



We just finished step 5

2
1 1 1
4 4 4
gf( ) 0% (p1 +p2 —p3 —pa)dq
(p1 —p3)?2—m% ) (p1—ps—q3)?—m? g5 —m% ( Jdas

1.Label your p's and g's

2. Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra ‘I




Last step

(g 4 1 1 4
Z (27T> ((pl —p3)? — m%) J ((pr —p3 — q@)? —m3%) (¢% — m%)d !
(2pi)* from canceling delta

1.Label your p's and g's

2. Vertex factors

3. Propagators

4. Momentum and Energy
conservation

5. Internal momentum
iIntegration

6. Cancel delta function
and add extra ‘I’




Can try and evaluate that
ugly integral, but we find
that it diverges at large
momentum for internal q!



How to deal with infinities?!1?!

More thorough investigation
finds that the infinities are
really just affecting the
masses of objects and the
coupling constants - but these
are measured quantities
anyway, so we can “use” the
measured values. Such
theories are renormalizable




How to deal with infinities?!1?!

1

1

) (i

P1 _pB)

’ —m%)QJ ((p1 —p3 — @)* —m3) (¢ —m%)d4q

We can’t assume that physics
inside those loops can have
infinite momentum - there
must be a “cutoff” at which
new physics appears (of
course, this is just a toy
theory, but the same thing
happens in real theories!)



Beyond the infinities

There are modifications to the
matrix element that are not
infinite that do provide
corrections to m and g.
Implies that there is energy
dependence to masses and
couplings! (See running of the
couplings from earlier in the
semester)



Well said

THERE ARE TWO KINDS OF PEOPLE

IN THIS WORLD
e e e e
A,. F\l.
= e e e
"This diagram represents two electrons :  "This diagram represents a termin a
interacting via exchange of a virtual ©  series expansion"

photon"



