## Let's move to Bound States

When we discuss
bound states of two objects in central-force potential, kinetic energy and potential energy are ~the same. How does this compare to the rest energy of the objects?

Hydrogen ionization energy: 13.6 eV vs 0.5 MeV rest mass quarks are ~relatively large, so we can also consider them non-relativistically (which makes them much easier). NOT true for uds quarks

|s(e)| $=1 / 2$
so j=L +/- 1/2

Fig. 5.2 Fine structure in hydrogen. The $n$th Bohr level (fine line) splits into $n$ sublevels (dashed lines), characterized by $j=$ $\frac{1}{2}, \frac{3}{2}, \ldots,\left(n-\frac{1}{2}\right)$. Except for the last of these, two different values of $I$ contribute to
each level: $t=j-\frac{1}{2}$ and $t=j+\frac{1}{2}$. Spectro-
scopists' nomenclature $-S$ for $l=0, P$ for $l$ $=1, D$ for $t=2, F$ for $I=3$ - is indicated. All levels are shift:ed downward, as shown (the diagram is not to scale, however).

## Griffiths

## Lamb shift

Lamb shift: Led to development of quantum electro-dynamics! QED corrections to the electronproton interaction break degeneracy of two levels with same n, j but different L (so $2 \mathrm{~S}_{1 / 2}$ and $2 \mathrm{P}_{1 / 2}$ are not fully degenerate)




Willis Lamb

Spin-orbit coupling is principally due to spin of electron interacting with 'B field' from nucleus (fine structure). Much smaller is spin of nucleus interacting with 'B field' from electron. Goes as $\left(\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)^{4}$ hence hyperfine (and not fine) splitting.

For $n=1$, the difference in energy states of proton (e and p spins aligned vs anti-aligned, which is lower) is $5.9 \mu \mathrm{eV}=1420$ $\mathrm{MHz}=21 \mathrm{~cm}$. Famous 21 cm line (penetrates dust!)

Lifetime of 21 cm is millions of years! Thankfully, enough hydrogen can provide this transition. Long lifetime = narrow width, so this is excellent for spectroscopy (Doppler shifts)

Used extensively in radio-astronomy, studying the early Universe, galaxy formation, measuring distances to objects, cosmology


Pioneer Plaque: 21 cm line defines distance and unit of time

Differences between quarkonium and hydrogen/ positronium: Don't really know the potential (strong force!) Also, interaction between quarks is large. Doesn't work for two light quarks, either

Instead of considering different states as energy levels of an atom, consider different bound states as different particles, each with a different mass. Start with mesons (much easier than baryons)

Q---Q'

At short distances, we know that QCD is not a strong force.
Reasonable to start with 1/r potential.

At large distances, we know that force grows exponentially. Try V~kr (others could also work). Of course, $k$ can be a function of $r$ too!



## Griffiths

Positronlum

Labeled (confusingly, to me!) as $n^{(2 s+1)} \mathrm{L}_{J}(\mathrm{~L}=\mathrm{S}, \mathrm{P}, \mathrm{D}, \ldots$ for $0,1,2 \ldots$ and $s=0$ or 1 for anti-aligned or aligned spins), with $\mathrm{J}=\mathrm{L}+\mathrm{s}$


## Why was J/Psi discovered first?

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

## Charged modes

| $\Gamma_{8}$ | charged modes |
| :--- | :--- |
| $\Gamma_{9}$ | $\pi^{+} \pi^{-} \pi^{0}$ |
| $\Gamma_{10}$ | $\pi^{+} \pi^{-} \gamma$ |
| $\Gamma_{11}$ | $e^{+} e^{-} \gamma$ |
| $\Gamma_{12}$ | $\mu^{+} \mu^{-} \gamma$ |
| $\Gamma_{13}$ | $e^{+} e^{-}$ |
| $\Gamma_{14}$ | $\mu^{+} \mu^{-}$ |
| $\Gamma_{15}$ | $e^{+} e^{-} e^{+} e^{-}$ |
| $\Gamma_{16}$ | $\pi^{+} \pi^{-} e^{+} e^{-}$ |
| $\Gamma_{17}$ | $\pi^{+} \pi^{-} 2 \gamma$ |
| $\Gamma_{18}$ | $\pi^{+} \pi^{-} \pi^{0} \gamma$ |
| $\Gamma_{19}$ | $\pi^{0} \mu^{+} \mu^{-} \gamma$ |



## From PDG

## Due to C-parity!

$$
I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

$J / \psi(1 S)$ DECAY MODES

|  | Mode | Fraction $\left(\Gamma_{i} / \Gamma\right)$ | Confidence level |
| :--- | :--- | :--- | :--- |
| $\Gamma_{1}$ | hadrons | $(87.7 \pm 0.5) \%$ |  |
| $\Gamma_{2}$ | virtual $\gamma \rightarrow$ hadrons | $(13.50 \pm 0.30) \%$ |  |
| $\Gamma_{3}$ | $g g g$ | $(64.1 \pm 1.0) \%$ |  |
| $\Gamma_{4}$ | $\gamma g g$ | $(8.8 \pm 0.5) \%$ |  |
| $\Gamma_{5}$ | $e^{+} e^{-}$ | $(5.94 \pm 0.06) \%$ |  |
| $\Gamma_{6}$ | $\mu^{+} \mu^{-}$ | $(5.93 \pm 0.06) \%$ |  |



## Recall magnetic moment formula: $\mu=-\frac{e}{m} \mathbf{S}$

Spin-spin interactions in hadrons have two components:

$$
\begin{gathered}
\mu_{1} \cdot \mathbf{S}_{\mathbf{2}}=-\frac{e}{m_{1}} \mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}} \\
\mu_{2} \cdot \mathbf{S}_{\mathbf{1}}=-\frac{e}{m_{2}} \mathbf{S}_{\mathbf{2}} \cdot \mathbf{S}_{\mathbf{1}}=-\frac{e}{m_{2}} \mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}
\end{gathered}
$$

Sum is then

$$
-e \frac{m_{1}+m_{2}}{m_{1} m_{2}}\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right)=A\left(m_{1}+m_{2}\right) \frac{1}{m_{1} m_{2}}\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right)
$$

$$
\begin{gathered}
\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right), \mathbf{S}=\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}} \\
\mathbf{S}^{2}=\mathbf{S}_{\mathbf{1}}{ }^{2}+\mathbf{S}_{\mathbf{2}}{ }^{2}+2\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right) \\
\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right)=\frac{1}{2}\left(\mathbf{S}^{2}-\mathbf{S}_{\mathbf{1}}{ }^{2}-\mathbf{S}_{\mathbf{2}}{ }^{2}\right)
\end{gathered}
$$

$\mathrm{S}_{1}$ and $\mathrm{S}_{2}= \pm 1 / 2$

$$
\mathbf{S}_{1}{ }^{2}=\mathbf{S}_{2}{ }^{2}=(1 / 2)(1 / 2+1)=3 / 4
$$

$$
S^{2}=(1)(1+1)=2 \text { (spins aligned) or }
$$

$$
\left.\mathbf{S}^{2}=(0)(0+1)=0 \text { (spins anti-aligned }\right)
$$

$$
\text { So: } \mathbf{S}_{1} \cdot \mathbf{S}_{2}=1 / 4 \text { (spins aligned) }
$$

$$
\text { or: } \mathbf{S}_{1} \cdot \mathbf{S}_{2}=-3 / 4 \text { (spins anti-aligned) }
$$

$$
M\left(m_{1}---m_{2}\right)=m_{1}+m_{2}+A\left(m_{1}+m_{2}\right) \frac{1}{m_{1} m_{2}}\left(\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}\right)
$$

Mass M of meson composed $\quad S_{1} \cdot S_{2}=1 / 4$ (spins aligned) of quarks or: $S_{1} \cdot S_{2}=-3 / 4$ (spins anti-aligned) with mass
$\mathrm{m}_{1}$ and $\mathrm{m}_{2}$ then generically looks like this

Can try something simpler, and assume A is a constant (it surely is not, but maybe that is a reasonable approximation)

Table 5.3 Pseudoscalar and vector meson masses. $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$

Meson

|  |  |  |
| :--- | ---: | ---: |
| $\pi$ | 139 | 138 |
| $K$ | 487 | 496 |
| $\eta$ | 561 | 548 |
| $\rho$ | 775 | 776 |
| $\omega$ | 775 | 783 |
| $K^{*}$ | 892 | 894 |
| $\phi$ | 1031 | 1020 |

Very nice agreement! But need to be careful...

$$
\text { For example: } \quad \eta=\frac{u \bar{u}+d \bar{d}-2 s \bar{s}}{\sqrt{6}}
$$

A lot more complicated - have three quarks, and thus three spins to add together. Most importantly, mesons are always composed of a quark and an anti-quark, ie never contain two of the same particle. In baryons, however (example: proton = uud), this no longer has to be true.

Regardless, though, baryons have half-integer spin (three quarks with $s=+/-1 / 2$ can combine to give $s=+/-1 / 2$ or $+/-3 / 2$ only)

## How to add three spins

To add three spins together, we first start by adding two of them together. Back to those C-G tables from the PDG ...

Combining two $1 / 2 \times 1 / 2$ particles

$$
\begin{aligned}
& \left.\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{1}{2}\right\rangle=\mid 11> \\
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{2}}\right| 10>+\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\sqrt{\frac{1}{2}}\right| 10>-\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\right| 1-1>\right.
\end{aligned}
$$

## Let's rearrange

$$
\begin{aligned}
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\right| 11>\right. \\
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{2}}\right| 10>+\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\sqrt{\frac{1}{2}}\right| 10>-\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\right| 1-1>\right.
\end{aligned}
$$

These are the

$$
\begin{aligned}
\mid 11> & =\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{1}{2}> \\
\mid 1-1> & =\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>
\end{aligned}
$$

## Let's rearrange (can also use tables for this)

$$
\begin{aligned}
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\right| 11>\right. \\
& \left.\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}\right\rangle=\sqrt{\frac{1}{2}}|10\rangle+\sqrt{\frac{1}{2}}|00\rangle
\end{aligned}
$$

Add together here

$$
\left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\sqrt{\frac{1}{2}}\right| 10>-\sqrt{\frac{1}{2}}\right| 00>
$$

$$
\left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\right| 1-1>\right.
$$

$$
\sqrt{2} \left\lvert\, 10>=\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)+\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right.
$$

$$
\left\lvert\, 10>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)+\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right.
$$

## Let's rearrange (can also use tables for this)

$$
\begin{aligned}
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\right| 11>\right. \\
& \left|\frac{1}{2} \frac{1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{2}}\right| 10>+\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{1}{2}>=\sqrt{\frac{1}{2}}\right| 10>-\sqrt{\frac{1}{2}}\right| 00> \\
& \left|\frac{1}{2} \frac{-1}{2}>+\left|\frac{1}{2} \frac{-1}{2}>=\right| 1-1>\right.
\end{aligned}
$$

$$
\sqrt{2} \left\lvert\, 00>=\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)-\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right.
$$

$$
\left\lvert\, 00>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)-\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right.
$$

$$
\begin{gathered}
\left\lvert\, 00>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)-\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left\lvert\, 10>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)+\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left|11>=\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right. \\
\left|1-1>=\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right.
\end{gathered}
$$

When we add the third quark we will have to add spin $1 / 2$ with either spin 0 or spin 1

## Now we add the third one

## Combining spin $1 \times 1 / 2$ particles

We want the "inverse" of what we have been reading off. Can also use the tables for that!


## Combining spin $1 \times 1 / 2$ particles

$$
\begin{gathered}
\left|\frac{3}{2} \frac{3}{2}>=|11>+| \frac{1}{2} \frac{1}{2}>\right. \\
\left\lvert\, \frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>=\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{1}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{2}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
\left|\frac{3}{2} \frac{-3}{2}>=|1-1>+| \frac{1}{2} \frac{-1}{2}>\right.
\end{gathered}
$$



Combining spin $0 \times 1 / 2$ particles is trivial

$$
\begin{aligned}
&\left|\frac{1}{2} \frac{1}{2}>=|00>+| \frac{1}{2} \frac{1}{2}>\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>\right.=|00>+| \frac{1}{2} \frac{-1}{2}>
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, 00>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)-\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left|\frac{3}{2} \frac{3}{2}>=|11>+| \frac{1}{2} \frac{1}{2}>\right. \\
& \left|\frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right) \quad\right| 11>=\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{1}{2}> \\
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left\lvert\, \frac{3}{2} \frac{-1}{2}>=\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{1}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{2}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left|\frac{3}{2} \frac{-3}{2}>=|1-1>+| \frac{1}{2} \frac{-1}{2}>\right. \\
& |1-1\rangle=\left|\frac{1}{2} \frac{-1}{2}\right\rangle+1 \frac{1}{2} \frac{-1}{2} \\
& \text { combination }
\end{aligned}
$$

$\left|00>+\left|\frac{1}{2} \frac{1}{2}>=\right| \frac{1}{2} \frac{1}{2}>\right.$
$\left|00>+\left|\frac{1}{2} \frac{-1}{2}>=\right| \frac{1}{2} \frac{-1}{2}>\right.$

## Let's introduce some nicer notation

$$
\begin{aligned}
& \left\lvert\, 00>=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{-1}{2}>\right)-\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{-1}{2}>+\right| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left|\frac{3}{2} \frac{3}{2}>=|11>+| \frac{1}{2} \frac{1}{2}>\right. \\
& \left|\frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right) \quad\right| 11>=\left|\frac{1}{2} \frac{1}{2}>+\right| \frac{1}{2} \frac{1}{2}> \\
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}\left(|11>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left\lvert\, \frac{3}{2} \frac{-1}{2}>=\sqrt{\frac{2}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)+\sqrt{\frac{1}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(|10>+| \frac{1}{2} \frac{-1}{2}>\right)-\sqrt{\frac{2}{3}}\left(|1-1>+| \frac{1}{2} \frac{1}{2}>\right)\right. \\
& \text { Don't forget: order matters! }
\end{aligned}
$$

$$
\begin{aligned}
|00>+| \frac{1}{2} \frac{1}{2}> & =\left\lvert\, \frac{1}{2} \frac{1}{2}>\right. \\
|00>+| \frac{1}{2} \frac{-1}{2}> & =\left\lvert\, \frac{1}{2} \frac{-1}{2}>\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=(\uparrow)\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=(\downarrow)\right.
\end{aligned}
$$

## Using the notation

$$
\begin{aligned}
&\left|\frac{3}{2} \frac{3}{2}>=\right| 11>+(\uparrow) \left\lvert\, 00>=\frac{1}{\sqrt{2}}(\uparrow \downarrow)-\frac{1}{\sqrt{2}}(\downarrow \uparrow)\right. \\
& \left\lvert\, \frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}(\mid 11>+(\downarrow))+\sqrt{\frac{2}{3}}(\mid 10>+(\uparrow))\right. \left\lvert\, 10>=\frac{1}{\sqrt{2}}(\uparrow \downarrow)+\frac{1}{\sqrt{2}}(\downarrow \uparrow)\right. \\
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}(\mid 11>+(\downarrow))-\sqrt{\frac{1}{3}}(\mid 10>+(\uparrow))\right. \mid 11>=\uparrow \uparrow \\
& \left\lvert\, \frac{3}{2} \frac{-1}{2}>=\sqrt{\frac{2}{3}}(\mid 10>+(\downarrow))+\sqrt{\frac{1}{3}}(\mid 1-1>+(\uparrow))\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}(\mid 10>+(\downarrow))-\sqrt{\frac{2}{3}}(\mid 1-1>+(\uparrow))\right.\left|1 \frac{3}{2} \frac{-3}{2}>=\right| 1-1>+(\downarrow) \\
&\left|\frac{1}{2} \frac{1}{2}>=\right| 00>+\uparrow \\
& \frac{1}{2} \frac{-1}{2}>=\mid 00>+\downarrow
\end{aligned}
$$

$$
\begin{gathered}
\left\lvert\, \frac{3}{2} \frac{3}{2}>=\uparrow \uparrow \uparrow\right. \\
\left\lvert\, \frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow)+\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right)\right. \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right)\right. \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>=\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)(\downarrow)\right)+\sqrt{\frac{1}{3}}(\downarrow \downarrow \uparrow)\right. \\
\left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)\right. \\
\left\lvert\, \frac{3}{2} \frac{-3}{2}>=\downarrow \downarrow \downarrow\right. \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \uparrow\right. \\
\left\lvert\, \frac{1}{2} \frac{-1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \downarrow\right.
\end{gathered}
$$

## How to interpret

$$
\left\lvert\, \frac{3}{2} \frac{3}{2}>=\uparrow \uparrow \uparrow\right.
$$

$$
\begin{aligned}
\left\lvert\, \frac{3}{2} \frac{1}{2}>\right. & =\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow)+\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>\right. & =\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>\right. & =\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)(\downarrow)\right)+\sqrt{\frac{1}{3}}(\downarrow \downarrow \uparrow) \\
\left\lvert\, \frac{1}{2} \frac{-1}{2}>\right. & =\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \uparrow\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \downarrow\right.
\end{aligned}
$$

$$
\begin{gathered}
\left\lvert\, \frac{3}{2} \frac{3}{2}>=\uparrow \uparrow \uparrow\right. \\
\left\lvert\, \frac{3}{2} \frac{1}{2}>=\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow+\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow)\right. \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>=\right. \\
\frac{1}{\sqrt{3}}(\uparrow \downarrow \downarrow+\downarrow \uparrow \downarrow+\downarrow \downarrow \uparrow) \\
\left\lvert\, \frac{3}{2} \frac{-3}{2}>=\downarrow \downarrow \downarrow\right.
\end{gathered}
$$

$$
\left\lvert\, \frac{3}{2} \frac{-3}{2}>=\downarrow \downarrow \downarrow\right.
$$

Spin 3/2 states are easy to interpret: symmetric if we interchange any two quarks

$$
\frac{3}{2} \frac{3}{2}>=\uparrow \uparrow \uparrow
$$

$$
\begin{aligned}
\left\lvert\, \frac{3}{2} \frac{1}{2}>\right. & =\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow)+\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \quad \left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right)\right. \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>\right. & =\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \quad \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)\right. \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>\right. & =\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)(\downarrow)\right)+\sqrt{\frac{1}{3}}(\downarrow \downarrow \uparrow) \\
\left\lvert\, \frac{1}{2} \frac{-1}{2}>\right. & =\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)
\end{aligned}
$$

$$
\left\lvert\, \frac{3}{2} \frac{-3}{2}>=\downarrow \downarrow \downarrow\right.
$$

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \uparrow\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \downarrow\right.
\end{aligned}
$$

## How to interpret

$$
\left\lvert\, \frac{3}{2} \frac{3}{2}>=\uparrow \uparrow \uparrow\right.
$$

$$
\begin{aligned}
\left\lvert\, \frac{3}{2} \frac{1}{2}>\right. & =\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow)+\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \\
\left\lvert\, \frac{1}{2} \frac{1}{2}>\right. & =\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right) \\
\left\lvert\, \frac{3}{2} \frac{-1}{2}>\right. & =\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)(\downarrow)\right)+\sqrt{\frac{1}{3}}(\downarrow \downarrow \uparrow)
\end{aligned}
$$

$$
\left\lvert\, \frac{3}{2} \frac{-3}{2}>=\downarrow \downarrow \downarrow\right.
$$

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \uparrow\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \downarrow\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \frac{1}{2}>=\sqrt{\frac{2}{3}}(\uparrow \uparrow \downarrow)-\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \uparrow\right)\right. \\
& \left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)\right.
\end{aligned}
$$

$$
\left\lvert\, \frac{1}{2} \frac{-1}{2}>=\sqrt{\frac{1}{3}}\left(\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \downarrow\right)-\sqrt{\frac{2}{3}}(\downarrow \downarrow \uparrow)\right.
$$

These last two spin 1/2 states are symmetric under interchange of first and second quarks

For ground state ( $\mathrm{l}=0$ ), space wave function is symmetric. Left off with wave functions for spin, color and flavor. We will see that color wave function is necessarily anti-symmetric. That means that flavor x spin combination must be symmetric
$\qquad$
$\square$
$\square$
   $\square$

$\square$


$\square$
$\square$
$\square$
教
$\square$
$\square$

正
$\square$
$\square$
$\square$

$\qquad$




$\square$
$\square$

Something new to think about
Minos
I'd like for you to begin to think about your final project. You should put in some effort to prepare it, so time to start now. You need to pick a single analysis or result to present (something public in the past ~year)
http://arxiv.org/archive/hep-ex

ATLAS
CMS
LHCb
ALICE
SNO
Belle-2
AMS
LIGO
VIRGO
LUX
Dark Energy Survey
Pierre Auger
X17
Fermi Gamma Ray Telescope

Pick an analysis/paper and email it to me for approval no later than 1 week from today. l'll ask for some progress reports in the future, but for now I just want you to pick something interesting (and not what you work on for research, and not what someone else will be talking about). Talk to me if you need help picking a topic!

Want a 25 minute presentation on the topic! You should be including theory background if possible, as well as information on the detector, the analysis, the background estimation, and the significance of the result. We will all discuss the presentation for 10 minutes after you're done (aka ask you some questions)

I also reserve the right to reject papers that are too broad, too narrow, too old, or too out of focus for this course

## Aside on your final presentation

Note 0: It's not first-come/first-served, but instead we will flip coins or play rock-paper-scissors for who gets which topic.

Note 1: If you dropped by my office to discuss the paper, that does not count as fulfilling your homework assignment. Please sent it to me by email

Note 2: This really counts as a homework assignment. So don't miss the deadline! If you do, you get points off and I get to pick a topic for you :)

## Aside on your final presentation

Note 3: Only one topic per person, so you might want to have 1-2 backups in mind (class is small so maybe that's OK). l'll let you know class after it's due where we have duplicates (and alternates due then class after that)

Note 4: You are not covering an "experiment", but rather a single analysis/limit/measurement. So I want you to have the paper you will be reading in mind. If there is no physics result, then this does not count

