## Griffiths problems 1.19, 2.1, 2.2, 2.5, 2.6, 2.7, 2.8

Just a brief review at this stage before we delve in


$$
\overbrace{}^{s}{ }^{v^{s} \uparrow} \quad \begin{aligned}
& \text { Note simplicity from } \\
& \text { choice of units! }
\end{aligned}
$$

$$
\gamma=\left(1-v^{2}\right)^{-1 / 2}
$$

$$
\begin{gathered}
x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
\gamma=\gamma^{\prime} \\
z=z^{\prime}, y=y^{\prime} \\
t=\gamma\left(t^{\prime}+v x^{\prime}\right)
\end{gathered}
$$

# Cannot define simultaneity in all reference frames 

$$
L=\frac{L^{\prime}}{\gamma}
$$

Lorentz Contraction (objects shrink)
Time dilation (moving clocks run slow)

What happens
if $u$ ' = speed of light (which is ... what in our units?)

## Are folks familiar with fourvector notation?

## Get used to them :)

All we've done here is label the Oth component of space-time as time, and then the normal ( $x, y, z$ )

$$
\begin{aligned}
& x^{0}=t \\
& x^{1}=x \\
& x^{2}=y \\
& x^{3}=z
\end{aligned}
$$

Note that x in the 4-vector is standard notation, but it is not the position $x$

## Lorentz transformations with four-vectors

$$
\begin{array}{cl}
x^{0^{\prime}}=\gamma\left(x^{0}-v x^{1}\right) & \begin{array}{l}
\text { Introduces a nice } \\
\text { symmetry to the } \\
\text { transformations, which } \\
\text { leads us to re-writing it }
\end{array} \\
x^{1^{\prime}}=\gamma\left(x^{1}-v x^{0}\right) & \begin{array}{l}
\text { as... }
\end{array} \\
x^{2^{2^{\prime}}}=x^{2} & \sum_{\nu=0}^{3} \Lambda_{\nu}^{\mu} x^{\nu} \\
x^{3^{\prime}}=x^{3} & \begin{array}{l}
\text { Where } \wedge \text { is a } 4 \times 4 \\
\text { matrix. Let's get the } \\
\text { coordinates of the } \\
\text { matrix on the board... }
\end{array}
\end{array}
$$

$$
\Lambda=\left[\begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \begin{aligned}
& \text { The symmetry really } \\
& \text { stands out here }
\end{aligned}
$$

The second form has the sum implicit, and is shorthand to save smart (read: lazy) physicists from typing and writing
Summation notation will be used a LOT

## Define this invariant I. How does it transform? What is I'?

$$
\begin{gathered}
I=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
I^{\prime}=\left(x^{0^{\prime}}\right)^{2}-\left(x^{\prime}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
I^{\prime}=\left(x^{\prime}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
I^{\prime}=\gamma^{2}\left(x^{0}-v x^{1}\right)^{2}-\gamma^{2}\left(x^{1}-v x^{0}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
I^{\prime}=\gamma^{2}\left(\left(\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}+v^{2}\left(x^{1}\right)^{2}-v^{2}\left(x^{0}\right)^{2}-2 v x^{0} x^{1}+2 v x^{0} x^{1}\right)-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}\right. \\
I^{\prime}=\gamma^{2}\left(\left(x^{0}\right)^{2}\left(1-v^{2}\right)-\left(x^{1}\right)^{2}\left(1-v v^{2}\right)\right)-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}
\end{gathered}
$$

Now use

$$
\gamma^{2}=\frac{1}{1-v^{2}}
$$

$$
\begin{gathered}
I=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
I^{\prime}=\gamma^{2}\left(\left(x^{0}\right)^{2}\left(1-v^{2}\right)-\left(x^{1}\right)^{2}\left(1-v^{2}\right)\right)-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}=I
\end{gathered}
$$

## Now we see why we called I an invariant.

Define:

$$
g=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad I=\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu \nu} x^{\mu} x^{\nu}=g_{\mu \nu} x^{\mu} x^{\nu}
$$

covariant
vector (down)

## contravariant

 vector (up)$$
I=x_{\mu} x^{\mu}=x_{\nu} x^{\nu}
$$

$\mathrm{X}_{0}=\mathrm{x}^{0}$
$x_{1}=-x^{1}$
$x_{2}=-x^{2}$
$x_{3}=-x^{3}$
The names are not quite as innoortant as rennennoering that they are different (and that it's easy to convert fronn one to another)

$$
a^{\mu} b_{\mu}=a_{\mu} b^{\mu}=a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}
$$

Four-vector version of the dot production (which is also an invariant but only for three spacial dimensions)

$$
a^{\mu} b_{\mu}=a_{\mu} b^{\mu}=a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}
$$

Four-vector version of the dot production (which is also an invariant but only for three spacial dimensions)

$$
\begin{aligned}
& a^{\mu} b_{\mu}=a^{0} b^{0}-\vec{a} \cdot \vec{b} \\
& a^{2}=a^{\mu} a_{\mu}=a^{0} a^{0}-\vec{a}^{2}
\end{aligned}
$$

## More about the length of a 4-vector

$$
a^{2}=a^{\mu} a_{\mu}=a^{0} a^{0}-\vec{a}^{2}
$$

## $a^{2}>0$ time-like

 $a^{2}=0$ light-like$\mathrm{a}^{2}<0$ space-like (like normal spatial 3-vectors)

## Let's look at conservation of momentum, classically

Before| After

$\mathrm{m}_{\mathrm{A}}$
$\mathrm{m}_{\mathrm{B}}$
mc
mD
Conservation of momentum:

$$
m_{A} v_{A}+m_{B} v_{B}=m_{C} v_{C}+m_{D} v_{D}
$$

Now imagine a frame moving with constant velocity V with respect to this frame

$$
\begin{aligned}
v_{A}^{\prime} & =v_{A}-V \\
v_{B}^{\prime} & =v_{B}-V \\
v_{C}^{\prime} & =v_{C}-V \\
v_{D}^{\prime} & =v_{D}-V
\end{aligned}
$$

## Let's look at conservation of momentum

Now imagine a frame moving with constant velocity V with respect to this frame

$$
m_{A} v_{A}^{\prime}+m_{B} v_{B}^{\prime}=m_{C} v_{C}^{\prime}+m_{D} v_{D}^{\prime}
$$

$$
\begin{aligned}
v_{A}^{\prime} & =v_{A}-V \\
v_{B}^{\prime} & =v_{B}-V \\
v_{C}^{\prime} & =v_{C}-V \\
v_{D}^{\prime} & =v_{D}-V
\end{aligned}
$$

$m_{A} v_{A}+m_{B} v_{B}-V\left(m_{A}+m_{B}\right)=m_{C} v_{C}+m_{D} v_{D}-V\left(m_{C}+m_{D}\right)$
And we know $m_{A} v_{A}+m_{B} v_{B}=m_{C} v_{C}+m_{D} v_{D}$

$$
\begin{aligned}
V\left(m_{A}+m_{B}\right) & =V\left(m_{C}+m_{D}\right) \\
m_{A}+m_{B} & =m_{C}+m_{D}
\end{aligned}
$$

Classical conservation of momentum (in all inertial

$$
m_{A}+m_{B}=m_{C}+m_{D}
$$ reference frames) implies conservation of mass!

Before| After

$m_{A} \quad m_{B}$
mc
Conservation of momentum:

$$
m_{A} v_{A}+m_{B} v_{B}=m_{C} v_{C}+m_{D} v_{D}
$$

Now imagine a frame moving with constant velocity V with respect to this frame. Note the use of new velocity addition formula!
$\begin{aligned} v_{A}^{\prime} & =\frac{v_{A}-V}{1-v_{A} V} \\ v_{B}^{\prime} & =\frac{v_{B}-V}{1-v_{B} V} \\ v_{C}^{\prime} & =\frac{v_{C}-V}{1-v_{C} V} \\ v_{D}^{\prime} & =\frac{v_{D}-V}{1-v_{D} V}\end{aligned}$

$$
\begin{array}{rlrl}
m_{A} v_{A}+m_{B} v_{B}=m_{C} v_{C}+m_{D} v_{D} & v_{A}^{\prime} & =\frac{v_{A}-V}{1-v_{A} V} \\
m_{A} v_{A}^{\prime}+m_{B} v_{B}^{\prime}=m_{C} v_{C}^{\prime}+m_{D} v_{D}^{\prime} & v_{B}^{\prime} & =\frac{v_{B}-V}{1-v_{B} V} \\
m_{A} \frac{v_{A}-V}{1-v_{A} V}+m_{B} \frac{v_{B}-V}{1-v_{B} V}=m_{C} \frac{v_{C}-V}{1-v_{C} V}+m_{D} \frac{v_{D}-V}{1-v_{D} V} & v_{C}^{\prime} & =\frac{v_{C}-V}{1-v_{C} V} \\
v_{D}^{\prime} & =\frac{v_{D}-V}{1-v_{D} V}
\end{array}
$$

Velocities no longer nicely cancel, so we're stuck in the relativistic case! No longer have proof of mass conservation

## Let's rethink conservation of momentum

Nominal definition of momentum $p=m \frac{d x}{d t}$
Not surprising that we run into trouble - both numerator and denominator are not Lorentz invariant! Let's make an ad hoc try and replace time with proper time
$\tau=\mathrm{t} / \mathrm{\gamma}$

$$
p=m \frac{d x}{d \tau}=m \frac{d x}{d(t / \gamma)}=\gamma m \frac{d x}{d t}
$$

## Conservation momentum with new definition

## First frame

$$
\frac{m_{A} v_{A}}{\sqrt{1-v_{A}^{2}}}+\frac{m_{B} v_{B}}{\sqrt{1-v_{B}^{2}}}=\frac{m_{C} v_{C}}{\sqrt{1-v_{C}^{2}}}+\frac{m_{D} v_{D}}{\sqrt{1-v_{D}^{2}}}
$$

New frame

$$
\frac{m_{A} v_{A}^{\prime}}{\sqrt{1-\left(v_{A}^{\prime}\right)^{2}}}+\frac{m_{B} v_{B}^{\prime}}{\sqrt{1-\left(v_{B}^{\prime}\right)^{2}}}=\frac{m_{C} v_{C}^{\prime}}{\sqrt{1-\left(v_{C}^{\prime}\right)^{2}}}+\frac{m_{D} v_{D}^{\prime}}{\sqrt{1-\left(v_{D}^{\prime}\right)^{2}}}
$$

## Some algebra in new frame

$$
\frac{m_{A} v_{A}^{\prime}}{\sqrt{1-\left(v_{A}^{\prime}\right)^{2}}}+\frac{m_{B} v_{B}^{\prime}}{\sqrt{1-\left(v_{B}^{\prime}\right)^{2}}}=\frac{m_{C} v_{C}^{\prime}}{\sqrt{1-\left(v_{C}^{\prime}\right)^{2}}}+\frac{m_{D} v_{D}^{\prime}}{\sqrt{1-\left(v_{D}^{\prime}\right)^{2}}}
$$

Let's look at first term:

$$
\begin{gathered}
\frac{m_{A}\left(\frac{v_{A}-V}{1-v_{A} V}\right)}{\sqrt{1-\left(\frac{v_{A}-V}{1-v_{A} V}\right)^{2}}}= \\
\frac{m_{A}\left(\frac{v_{A}-V}{1-v_{A} V}\right)}{\sqrt{\frac{\left(1-v_{A} V\right)^{2}-\left(v_{A}-V\right)^{2}}{\left(1-v_{A} V\right)^{2}}}}= \\
\frac{m_{A}\left(v_{A}-V\right)}{\sqrt{\left(1-v_{A} V\right)^{2}-\left(v_{A}-V\right)^{2}}}= \\
\frac{m_{A}\left(v_{A}-V\right)}{\sqrt{1+v_{A}^{2} V^{2}-2 v_{A} V-v_{A}^{2}-V^{2}+2 v_{A} V}} \\
\sqrt{m_{A}\left(v_{A}-V\right)} \\
\frac{v_{A}^{2} V^{2}-v_{A}^{2}-V^{2}}{}
\end{gathered}
$$

$$
\begin{aligned}
v_{A}^{\prime} & =\frac{v_{A}-V}{1-v_{A} V} \\
v_{B}^{\prime} & =\frac{v_{B}-V}{1-v_{B} V} \\
v_{C}^{\prime} & =\frac{v_{C}-V}{1-v_{C} V} \\
v_{D}^{\prime} & =\frac{v_{D}-V}{1-v_{D} V}
\end{aligned}
$$

## Some algebra in new frame

$$
\frac{m_{A} v_{A}^{\prime}}{\sqrt{1-\left(v_{A}^{\prime}\right)^{2}}}+\frac{m_{B} v_{B}^{\prime}}{\sqrt{1-\left(v_{B}^{\prime}\right)^{2}}}=\frac{m_{C} v_{C}^{\prime}}{\sqrt{1-\left(v_{C}^{\prime}\right)^{2}}}+\frac{m_{D} v_{D}^{\prime}}{\sqrt{1-\left(v_{D}^{\prime}\right)^{2}}}
$$

$$
v_{A}^{\prime}=\frac{v_{A}-V}{1-v_{A} V}
$$

$$
v_{B}^{\prime}=\frac{v_{B}-V}{1-v_{B} V}
$$

$$
v_{C}^{\prime}=\frac{v_{C}-V}{1-v_{C} V}
$$

$$
v_{D}^{\prime}=\frac{v_{D}-V}{1-v_{D} V}
$$



## Some algebra in new frame

$$
\begin{aligned}
& \frac{m_{A} v_{A}^{\prime}}{\sqrt{1-\left(v_{A}^{\prime}\right)^{2}}}+\frac{m_{B} v_{B}^{\prime}}{\sqrt{1-\left(v_{B}^{\prime}\right)^{2}}}=\frac{m_{C} v_{C}^{\prime}}{\sqrt{1-\left(v_{C}^{\prime}\right)^{2}}}+\frac{m_{D} v_{D}^{\prime}}{\sqrt{1-\left(v_{D}^{\prime}\right)^{2}}} \\
& \text { First term }=\frac{m_{A} v_{A}}{\sqrt{1-v_{A}^{2}}} \frac{1}{\sqrt{1-V^{2}}}-\frac{m_{A}}{\sqrt{1-v_{A}^{2}}} \frac{V}{\sqrt{1-V^{2}}}
\end{aligned}
$$

## So...

$$
\begin{aligned}
& \frac{m_{A} v_{A}}{\sqrt{1-v_{A}^{2}}} \frac{1}{\sqrt{1-V^{2}}}-\frac{m_{A}}{\sqrt{1-v_{A}^{2}}} \frac{V}{\sqrt{1-V^{2}}}+ \\
& \frac{m_{B} v_{B}}{\sqrt{1-v_{B}^{2}}} \frac{1}{\sqrt{1-V^{2}}}-\frac{m_{B}}{\sqrt{1-v_{B}^{2}}} \frac{V}{\sqrt{1-V^{2}}}= \\
& \frac{m_{C} v_{C}}{\sqrt{1-v_{C}^{2}}} \frac{1}{\sqrt{1-V^{2}}}-\frac{m_{C}}{\sqrt{1-v_{C}^{2}}} \frac{V}{\sqrt{1-V^{2}}}+ \\
& \frac{m_{D} v_{D}}{\sqrt{1-v_{D}^{2}}} \frac{1}{\sqrt{1-V^{2}}}-\frac{m_{D}}{\sqrt{1-v_{D}^{2}}} \frac{V}{\sqrt{1-V^{2}}}
\end{aligned}
$$

But from original frame

$$
\begin{aligned}
& \frac{m_{A} v_{A}}{\sqrt{1-v_{A}^{2}}}+\frac{m_{B} v_{B}}{\sqrt{1-v_{B}^{2}}}= \\
& \frac{m_{C} v_{C}}{\sqrt{1-v_{C}^{2}}}+\frac{m_{D} v_{D}}{\sqrt{1-v_{D}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m_{A}}{\sqrt{1-v_{A}^{2}}} \frac{V}{\sqrt{1-V^{2}}}+\frac{m_{B}}{\sqrt{1-v_{B}^{2}}} \frac{V}{\sqrt{1-V^{2}}}= \\
& \frac{m_{C}}{\sqrt{1-v_{C}^{2}}} \frac{V}{\sqrt{1-V^{2}}}+\frac{m_{D}}{\sqrt{1-v_{D}^{2}}} \frac{V}{\sqrt{1-V^{2}}}
\end{aligned}
$$

Cancel the common term...

$$
\begin{aligned}
& \frac{m_{A}}{\sqrt{1-v_{A}^{2}}}+\frac{m_{B}}{\sqrt{1-v_{B}^{2}}}= \\
& \frac{m_{C}}{\sqrt{1-v_{C}^{2}}}+\frac{m_{D}}{\sqrt{1-v_{D}^{2}}}
\end{aligned}
$$

This quantity must be conserved then! But what is it?

$$
\frac{m}{\sqrt{1-v^{2}}}=m\left(1-v^{2}\right)^{-1 / 2} \sim m\left(1+v^{2} / 2\right)
$$

So this is a statement of the conservation of energy! At small velocities, energy is equal to the rest mass plus the kinematic energy (note that when $v=0$ the energy is not zero, but $m$ !)

$$
\frac{m}{\sqrt{1-v^{2}}}=m\left(1-v^{2}\right)^{-1 / 2} \sim m\left(1+v^{2} / 2\right)
$$

So this is a statement of the conservation of energy! At small velocities, energy is equal to the rest mass plus the kinematic energy

$$
\begin{array}{cl} 
& \begin{array}{l}
\text { This way, } \mathrm{p}^{2} \text { is } \\
\text { invariant, as it must be }
\end{array} \\
p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right) & \begin{array}{l}
\text { For } \mathrm{m}=0 \text { (ex for: } \\
p^{\mu} p_{\mu}=E^{2}-\mathbf{p}^{2}=m^{2}
\end{array} \\
& \text { photons), }|\mathrm{p}|=\mathrm{E}
\end{array}
$$

$$
\begin{gathered}
p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right) \\
p^{\mu} p_{\mu}=E^{2}-\mathbf{p}^{2}=m^{2}
\end{gathered}
$$

$$
\begin{gathered}
E=\gamma m \\
\vec{p}=\gamma m \vec{v} \\
\rightarrow(\vec{p} / E)=\vec{v}
\end{gathered}
$$

As expected, for light, $|v|=1$ and $|p|=E$

We just saw that energy and momentum (correctly defined) are conserved. For process $A+B \rightarrow C+D$ :

$$
\begin{aligned}
E_{A}+E_{B} & =E_{C}+E_{D} \\
\vec{p}_{A}+\vec{p}_{B} & =\vec{p}_{C}+\vec{p}_{D}
\end{aligned}
$$

Conveniently written as:

$$
p_{A}^{\mu}+p_{B}^{\mu}=p_{C}^{\mu}+p_{D}^{\mu}
$$

Mass is clearly not conserved:

$$
W^{+} \rightarrow e^{+}+\nu_{e}
$$

## Relativistic collisions

What about a particle decay?

$$
A \rightarrow B+C
$$

$A_{\mu} A^{\mu}=m_{A}^{2} \rightarrow(B+C)_{\mu}(B+C)^{\mu}=\left(E_{B}+E_{C}\right)^{2}-\left(\mathbf{p}_{\mathbf{B}}+\mathbf{p}_{\mathbf{C}}\right)^{2}$
Lets us estimate the mass of a parent particle from its decay products. Conversation of energy also tells us:

$$
m_{A}=\sqrt{m_{B}^{2}+\mathbf{p}_{B}^{2}}+\sqrt{m_{C}^{2}+\mathbf{p}_{C}^{2}}
$$

Particle decay products cannot be more massive than mass of original particle!
(Remember - proton stability...)

# Initial 

$$
p_{1}=(2 m, p) \quad p_{2}=(m, 0)
$$

Final
$p^{\prime}=\left(E, p^{\prime}\right)$
Particle with total energy $=2 \mathrm{~m}$ collides with an identical particle at rest. They stick together. What is the mass of the resulting lump? What is its velocity?

Conservation of $\mathrm{E}: 2 \mathrm{~m}+\mathrm{m}=3 \mathrm{~m}=\mathrm{E}$

## Initial $\mathrm{m} \longrightarrow \mathrm{m}$ <br> $$
p^{\prime}=\left(3 m, p^{\prime}\right)
$$

$$
\begin{array}{cc}
\mathrm{p}_{1}=\left(\mathbf{E}_{1}=2 \mathrm{~m}, \mathbf{p}\right) & \mathrm{p}_{2}=(\mathrm{m}, 0) \quad \mathrm{p}^{\prime}=(3 \\
E_{1}^{2}-\mathbf{p}^{2}=m^{2} & \\
\left(2 m^{2}\right)-m^{2}=\mathbf{p}^{2} & |\mathbf{p}|=\left|\mathbf{p}^{\prime}\right|=\sqrt{3} m \\
\mathbf{p}^{2}=3 m^{2} & \\
|\mathbf{p}|=\sqrt{3} m &
\end{array}
$$

## One fun example



Final

$$
E_{1}^{2}-\mathbf{p}^{2}=m^{2}
$$

$$
(2 m)^{2}-m^{2}=\mathbf{p}^{2}
$$

$$
\begin{aligned}
\mathbf{p}^{2} & =3 m^{2} \\
|\mathbf{p}| & =\sqrt{3} m
\end{aligned}
$$

$$
|\mathbf{p}|=\left|\mathbf{p}^{\prime}\right|=\sqrt{3} m
$$

## One fun example



$$
\begin{gathered}
\mathbf{p}_{1}=(2 \mathrm{~m}, \mathbf{p}) \quad \mathrm{p}_{2}=(\mathrm{m}, 0) \quad p^{\prime}=(3 m, \sqrt{3} m) \\
M^{2}=E^{2}-\left(\mathbf{p}^{\prime}\right)^{2}=9 m^{2}-3 m^{2} \\
M=\sqrt{6} m \quad \begin{array}{c}
\text { Total mass not } \\
\text { conserved }
\end{array}
\end{gathered}
$$

$$
|v|=\frac{|\mathbf{p}|}{E}=\frac{\sqrt{3} m}{3 m}=\frac{1}{\sqrt{3}}
$$

## Let's follow Griffiths Ex 3.3

A pion at rest decays into a muon and a neutrino. What is the speed of the muon?

Before $\pi$


Conservation of momentum: $\mathbf{p}_{\mu}=-\mathbf{p}_{\nu}$
Conservation of energy: $\mathrm{E}_{\mu}+\mathrm{E}_{\nu}=\mathrm{E}_{\pi}$

Before ("back to back")

After


So muon and neutrino travel in

## Let’s follow Griffiths Ex 3.3

## Apply conservation of energy:

$$
\begin{gathered}
E_{\mu}+E_{\nu}=E_{\pi} \\
\sqrt{m_{\mu}^{2}+\vec{p}_{\mu}^{2}}+\sqrt{m_{\nu}^{2}+\vec{p}_{\nu}^{2}}=\sqrt{m_{\pi}^{2}+\vec{p}_{\pi}^{2}} \\
\sqrt{m_{\mu}^{2}+\vec{p}_{\mu}^{2}}+\left|\vec{p}_{\nu}\right|=m_{\pi} \longleftarrow \text { Pion was at rest } \\
\text { Neutrino mass } \sim 0
\end{gathered}
$$

## Let's follow Griffiths Ex 3.3

## Apply conservation of energy:

$$
\begin{gathered}
\sqrt{m_{\mu}^{2}+\vec{p}_{\mu}^{2}+\left|\vec{p}_{\nu}\right|=m_{\pi}} \\
\sqrt{m_{\mu}^{2}+\vec{p}_{\mu}^{2}}=m_{\pi}-\left|\vec{p}_{\nu}\right| \\
m_{\mu}^{2}+\vec{p}_{\mu}^{2}=m_{\pi}^{2}+\left|\vec{p}_{\nu}\right|^{2}-2 m_{\pi}\left|\vec{p}_{\nu}\right| \\
\text { Equal } \\
m_{\mu}^{2}=m_{\pi}^{2}-2 m_{\pi}\left|\vec{p}_{\nu}\right| \\
m_{\mu}^{2}=m_{\pi}^{2}-2 m_{\pi}\left|\vec{p}_{\mu}\right| \\
\left|\vec{p}_{\mu}\right|=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}
\end{gathered}
$$

## Let's follow Griffiths Ex 3.3

$$
\begin{gathered}
\left|\vec{p}_{\mu}\right|=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}} \\
E_{\mu}^{2}=\vec{p}_{\mu}^{2}+m_{\mu}^{2}=\frac{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}{4 m_{\pi}^{2}}+m_{\mu}^{2} \quad|\mathrm{~V}|=|\mathrm{p}| / \mathrm{E} \\
E_{\mu}^{2}=\frac{m_{\pi}^{4}+m_{\mu}^{4}-2 m_{\pi}^{2} m_{\mu}^{2}+4 m_{\pi}^{2} m_{\mu}^{2}}{4 m_{\pi}^{2}} \\
E_{\mu}^{2}=\frac{m_{\pi}^{4}+m_{\mu}^{4}+2 m_{\pi}^{2} m_{\mu}^{2}}{4 m_{\pi}^{2}} \\
E_{\mu}^{2}=\frac{\left(m_{\pi}^{2}+m_{\mu}^{2}\right)^{2}}{4 m_{\pi}^{2}} \\
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}}
\end{gathered}
$$

## Let's follow Griffiths Ex 3.3

# Pion mass $\sim 135 \mathrm{MeV}$ Muon mass $\sim 106 \mathrm{MeV}$ 

$$
\left|v_{\mu}\right|=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{m_{\pi}^{2}+m_{\mu}^{2}}
$$

$$
v \sim 0.25
$$

( $25 \%$ of the speed of light)

Let's try using four-vector notation (remember that $p^{2}=m^{2}$ but be careful that $p$ here is the four-vector $p$ )

## Let's follow Griffiths Ex 3.3 (continued)

$$
\begin{array}{cl}
p_{\pi}=p_{\mu}+p_{\nu} & \begin{array}{l}
\text { What is } \mathrm{p}_{\pi} \mathrm{p}_{\mu} \text { ? The } \\
p_{\nu}=p_{\pi}-p_{\mu}
\end{array} \\
p_{\nu}^{2}=\left(p_{\pi}-p_{\mu}\right)^{2}=m_{\nu}=0 & \text { zion momentum is } \\
0=p_{\pi}^{2}+p_{\mu}^{2}-2 p_{\pi} p_{\mu} & \begin{array}{l}
\text { component so only first } \\
0=m_{\pi}^{2}+m_{\mu}^{2}-2 p_{\pi} p_{\mu}
\end{array} \\
\begin{array}{ll}
\text { contributes, and so } \\
\mathbf{p}_{\pi} \mathbf{p}_{\mu}=\mathbf{E}_{\pi} \mathrm{E}_{\mu}
\end{array} \\
0=m_{\pi}^{2}+m_{\mu}^{2}-2 m_{\pi} E_{\mu} & \begin{array}{l}
\text { Also, since pion was } \\
\text { at rest, } \mathbf{E}_{\pi}=m_{\pi} \text { so }
\end{array} \\
\begin{array}{l}
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}}
\end{array} & \begin{array}{l}
\mathbf{p}_{\pi} \mathbf{p}_{\mu}=m_{\pi} \mathbf{E}_{\mu}
\end{array}
\end{array}
$$

What is $p_{\pi} p$ ? The pion momentum is zero, so only first component (energy) contributes, and so $p_{\pi} p_{v}=E_{\pi} E_{v}$ Since pion was at rest, $E_{\pi}=m_{\pi}$. What is $E v$ ? It is the magnitude of the $m_{\mu}^{2}=m_{\pi}^{2}-2 m_{\pi}\left|p_{\mu}\right|$

$$
\left|p_{\mu}\right|=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}
$$ neutrino momentum, but that is the same as the magnitude of the muon momentum

## Griffiths 3.4

$\mathrm{pp} \rightarrow \mathrm{ppp} \overline{\mathrm{p}} \quad$ What is the threshold energy for this process?

At threshold, all four final state objects are at rest (if they were not at rest we could reduce the CoM collision energy and reduce their momentum) Invariant:

$$
\text { Initial } \longrightarrow_{\mathbf{p}_{1}=(\mathbf{E}, \mathbf{p})}^{\longrightarrow} \bigcap_{\mathbf{p}_{2}=(\mathbf{m}, 0)}^{\left(p_{1}+p_{2}\right)^{2}=(E+m)^{2}-\mathbf{p}^{2}}
$$

## Griffiths 3.4

## Invariant:

$$
\left(p_{1}+p_{2}\right)^{2}=(E+m)^{2}-\mathbf{p}^{2}
$$

$$
\left(p_{3}+p_{4}+p_{5}+p_{6}\right)^{2}=(4 m)^{2}=\left(p_{1}+p_{2}\right)^{2}
$$

$$
16 m^{2}=(E+m)^{2}-\mathbf{p}^{2}
$$

Initial


$$
\mathbf{p}^{2}=E^{2}-m^{2}
$$

## Final

All at rest

$$
\begin{gathered}
16 m^{2}=(E+m)^{2}-\mathbf{p}^{2} \quad \mathbf{p}^{2}=E^{2}-m^{2} \\
16 m^{2}=E^{2}+2 m E+m^{2}-E^{2}+m^{2} \\
14 m^{2}=2 m E \rightarrow E=7 m
\end{gathered}
$$

What if we didn't fire at a stationary target?
Initial

$$
p_{1}=(E, p) \quad p_{2}=(E,-p)
$$

$$
\left(p_{1}+p_{2}\right)^{2}=(2 E)^{2}-(\mathbf{p}+-\mathbf{p})^{2}=4 E^{2}
$$

$$
16 m^{2}=4 E^{2} \rightarrow E=2 m
$$

In this example, have to give protons a lot more kinetic energy for the fixed target version! Of course, the accelerator for the beams is much more complex :)

## GZK cutoff

## Greisen-Zatsepin-Kuzmin: Over long

 enough distances, high-energy cosmic rays coming from the Universe should interact with the cosmic microwave backgroundwww2.astro.psu.ed u/users/nnp/cr.html


$$
\begin{gathered}
\gamma+p \rightarrow p \pi^{0} \\
p_{\gamma}+p_{p}=p_{p^{\prime}}+p_{\pi^{0}} \\
\left(p_{\gamma}+p_{p}\right)^{2}=\left(p_{p^{\prime}}+p_{\pi^{0}}\right)^{2} \\
p_{\gamma}^{2}+p_{p}^{2}+2 p_{\gamma} \cdot p_{p}=p_{p^{\prime}}^{2}+p_{\pi^{0}}^{2}+2 p_{\pi^{0}} \cdot p_{p^{\prime}} \\
m_{p}^{2}+2 p_{\gamma} \cdot p_{p}=m_{p}^{2}+m_{\pi^{0}}^{2}+2 p_{\pi^{0}} \cdot p_{p^{\prime}} \\
2 p_{\gamma} \cdot p_{p}=m_{\pi^{0}}^{2}+2 p_{\pi^{0}} \cdot p_{p^{\prime}}
\end{gathered}
$$

At threshold, pion and proton in final state are at rest and their momenta are zero (and energies equal to their masses)

$$
2 p_{\gamma} \cdot p_{p}=m_{\pi^{0}}^{2}+2 m_{\pi^{0}} m_{p}
$$

At threshold, have a head-on collision. Assume highly relativistic particles and we get...

$$
2 p_{\gamma} \cdot p_{p}=m_{\pi^{0}}^{2}+2 m_{\pi^{0}} m_{p}
$$

Head-on collision with energies $\gg m_{p}$

$$
\begin{gathered}
p_{\gamma}=\left(E_{\gamma}, E_{\gamma}, 0,0\right) \\
p_{p}=\left(E_{p},-E_{p}, 0,0\right) \\
2 p_{p} \cdot p_{\gamma}=2 E_{p} E_{\gamma}-2\left(-E_{p}\right) E_{\gamma}=4 E_{p} E_{\gamma}
\end{gathered}
$$

Want to solve for unknown cosmic rate proton energy. Photon energy is
CMB ( $6 \times 10^{-4} \mathrm{ev}$ ). Plug in and we get $\sim 2 \times 10^{20} \mathrm{ev}$
Similarly have $\quad \gamma+p \rightarrow n \pi^{+}$

## GZK cutoff

Of course, we used an "average" CMB photon, and ignored a full calculation of the kinematics (which goes through delta resonances) and assumed protons. Nevertheless, distribution doesn't go to zero! Where are these sources coming from? Nearby sources? Or new physics?

Equivalent c.m. energy $\sqrt{5}$ pp ( GeV )

## http://

www2.astro.psu.ed u/users/nnp/cr.html

O Not logged in Talk Contributions Create account Log in
Read Edit View history Search a

## WikipediA

## Oh-My-God particle

From Wikipedia, the free encyclopedia

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
The Oh-My-God particle was an ultra-high-energy cosmic ray (most likely an iron nucleus ${ }^{\text {[citation needed] }}$ ) detected on the evening of 15 October 1991 over Dugway Proving Ground, Utah, by the University of Utah's Fly's Eye Cosmic Ray Detector. ${ }^{[1][2]}$ Its observation was a shock to astrophysicists (hence the name), who estimated its energy to be approximately $3 \times 10^{20} \mathrm{eV}\left(3 \times 10^{8} \mathrm{TeV}\right.$, about 20 million times more energetic than the highest energy measured in radiation emitted by an extragalactic object) $)^{[3]}$ in other words, an atomic nucleus with kinetic energy equal to 48 Joules, equivalent to a 5 -ounce ( 142 g ) baseball traveling at about 93.6 kilometers per hour $(60 \mathrm{mph}){ }^{[4]}$

