A brief detour to Lagrangians

You've all seen L=T-U
this before, hopefully dor  or
more than a few times ;5 = 34

Now we are dealing with fields! Which are
themselves functions of x,y,z .. and also t.
Define a “Lagrangian density” that is a function
of these fields and their derivatives:

Does analogy make
sense?
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Relating Lagrangian density to more familiar Lagrangian

Lagrangian density: generalized coordinates q;
are replaced by the field themselves, and time
derivates dqgi/dt are replaced by derivatives of
the fields with respect to each space-time
coordinate



Simplest Lagrangian (Klein-Gordon for scalar)
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Simplest Lagrangian (Klein-Gordon for scalar)
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Klein-Gordon equation describing the field
of a spin-0 particle with mass m



Dirac Lagrangian for spinor field

L= 7;@7“&#@& — mZJQp
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Implies the Dirac equation!
YO — m2 = 0

iV 0,10 +m2yY = 0



Proca Lagrangian for vector field

m2

w AV vV AN . Y ¥ %
L= 167T(a A” = VAR (@A — D A) + - AVA,

Define F=0"A"— o A%

And can work
through algebra (we won't!)
to get:

0, F" + m?AY = (



Noether’'s Theorem and symmetries

Think back to classical mechanics and an object
of mass m orbiting in a gravitational field
produced by a second mass M

1 GM
L=T-V=-m?y 2"
2 r2
1 1 GMm

L = §m7'“2 + §mr2$2 + 2

No @ dependence (Lagrangian is invariant under
the transformation — P+0P), so

a (a_L> -0 oL _ mr?¢ constant
dt \ 0¢ 0



Noether’'s Theorem and symmetries

We like transformation that don’'t change our
Lagrangian (we like symmetries!) If we can
identify a symmetry, then we can say that
something is conserved. But we need to expand
what sorts of things we examine...



Local Gauge invariance

L= 7;@7“&#@& — m%lﬂ

Global gauge

Invariance b — e
(Lagrangian — 0
doesn’'t change
due to overall phase)

Look at the difference
carefully here!

What about local 0(z)
phase (z) — 7P (z)

transformations? ¥ (z) — e @) (z)



Local Gauge invariance

L= i@’)ﬂu&/ﬂ?ﬁ — m2a¢

Y(x) — " p(a)
Y(x) — e ()

L =ie @ yta, (e @) — m2ey)
0,(e ) = i[0,0(x)]e ™y + e,

L= ipy"0unh — m*yih — Py [0,0]¢

/

So Lagrangian not generally
invariant under this transformation!
But we can demand it



Let’s try and fix that!

Add a vector field A to the Lagrangian:

L = ipy" 0,0 — mipp — (") Ay
A, — A, + I\
L= i@v“ﬁuw — mz%ﬁ — @’V'u [%HW — QEV“ZDAM — CJEV%MM

0 We want these to cancel
SO .. A= —



But we need to add the free term for A

= iy 0, — m2 — (g )A, A= i’
AM — Au + 8M)\

A _ [ AV VAW o m= .
r 167T(aA = AN (04 — O, A,) + - AV A,

How do these new terms transform under
our gauge transformation?
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How are the new pieces of our Lagrangian transforming?

2

A _ HAY — QY ARY(D. A, — 0L A,) + AV A
L 167T(8 0" AM) (0 Ay — 0 AL) + AV A,
—1 m2

T [0F(AY 4+ 0" X) — 0" (AY 4+ 0P N)(0u(Ay + OuN) — 0L (A, + 0N + —(AY + 0" M) (AL + 0 N)

A =
87

LA = [0UAY RN~ A — P ON) @Ay + 0N — DAy — 0,8 N)]
2

T (AY A, + VNA, + AYON + 0UAGLN)

81
oHo" N = 0"\
2

8
So this is only invariant if m = 0!

A(LA) = T (0 AA, + AYO N + VA0, N)



Can we make this more general?

Physicists like theories with
symmetries (see chapter 4!) and
local gauge invariance is a nicely
general one! How to build on it?

0,,(e? @) = i[0,0(x)]e? @ ep 4+ 9@,
Ou(e™"M1p) = —i[0,(Aq) e Tp + e 70,1

Op(e™ ) = [0, — iq(0,\)]¢



Can we make this more general?

Op(e™ 1) = €720, — ig(Fu )]

OK if we 0, »> D, =0, +igA, U(1)gauge
replace: invarariance

/ W — U, UTU = 1,U = "
Covariant derivative

If you take field theory, they will
become your friend

The price we pay is that we must introduce
a hew massless vector field



Yang-Mills theory example

Two spin-1/2 non-interacting particles
= i1h1 Y Opibr — M1y + oyt Outhe — mPibathy

Write this more ¥ = ( 22 )
leanly as: T (T T
cleanly as Y = (VY1 ¥s)

Pyt — MQ?W

(b )



Let’'s discuss particle masses in Lagrangians

Classical L=T-U

More L= %(%@(5”@ - %m%f

field theory 1 2 12

Can think of the mass term as the “field
squared” term in the Lagrangian. The first
piece (with derivatives) is the kinetic energy
term (we know that kinetic energy involves
derivatives)



How do we know it is that term?

Could [Field*m]?

Lhe mass £ - %(@Lgb)(ﬁ“qb) _ %m%ﬂ e

oo e, [Field"GeVF? [Field*k]*
_ In our choice of natural units
Energy GeV GeV
Momentum GeV/c GeV

Mass GeV/c? GeV

Time hbar/GeV GeV-'

Length c*hbar/GeV GeV-1

Area (c*hbar/GeV)? GeV-2

All 3 terms must have the same units!
m has units of GeV that we want!



What does a Lagrangian with higher order terms represe

L= 5(0u8)(@9) — HmPd? — kit — g
/
Kinetic terms
of the fields Mass terms

Additional terms
represent new

nt?

6¢6
¢

couplings, of
more objects to a
single vertex



What about this Lagrangian?

1 1 1 1 1
L= 30u0)(0"0)+ gm*e® =2kt U =—om’¢” + 2k’

Mass term has wrong sign! ~ Minimum not at =0
That is because our but rather ®=tm/k

calculations are really a fancy _-4'X"x+0.25"X"X"X"X

version of perturbation theory. SZ
In most theories, the ground =
state of the “potential” has the ;|
field at zero (the ground state o \
of the E&M field has no E&M ™

5 4 3 2 1 0 1 2 3 4 5

waves or photons!) X




Expanding about the real ground state

1 m> _ m? 5 M ,  m? k*
T — —m® — —) Fmkn® — —n* +C
5 T )t o mt - ) F ok — e

Ignore constant term and cancel terms...

1 k2
£ = 5(0um)(0"n) - m*n® + mkn’® — Zn‘l



New Lagrangian

1 k2
£ = 5(0um)(0"n) - m*n® + mkn’® — Zn‘l

Compare with | |
original one before £ = 5(&@)(5#@ _ §m2¢2
adding new terms

Mass of particle is sqrt(2)*m

And we have these two new

Interactions

! Reminder: description in terms
, : of new variable must be the
» G same. Choice of vacuum ground

Vs IS

dN ’ vs state breaks symmetries

4 . V4
-~ L 4



Spontaneous symmetry breaking

4

1 1 2 .2 1 2 .4
L= 5(6’@)(&“@ TgmieT = ke L= %(%n)(@“n) —m?n* + mkn® — %2774

-4"x*x+0.25" X" X" X" X

Original Lagrangian
iIs symmetric in $—-P

-10F

New Lagrangian is not symmetric in this way!
Selection of specific ground state hides this
symmetry! We have expanded this around the
minimum (otherwise perturbation theory
makes no sense!)

5



Classical example of spontaneous symmetry breaking

Mechanical laws
describing this pencill
under gravity are
symmetrical with respect to
angle from the vertical

System choses to move to
a ground state of lower
energy, at the price of
hiding that symmetry!



Lagrangian with two scalar fields + symmetry breaking

L =

1
5

QU 1) + 5G4 5 (0u62)(@02) + GmPGh — KGR+ 63)?
1 1
U = —om?(¢1 + é3) + k(61 + ¢3)°

oU k?
5hr —m?¢; + ?(Qﬁ + ¢3)26¢1

oU

0y + (6} + $163) = 0

0p1

oU

O

—mZpa + k* (g2 + ¢3) =0



Lagrangian with two scalar fields + symmetry breaking

oU

0
oU

O

—m*d1 + k*(¢7 + d1¢3) = 0

—m*pa + k*(¢a; + ¢3) =0

—m?® + k*(¢7 + ¢5) = 0

o1 + ¢3 =

m2

k.2

A continous

set of minimal
But not at zero

field

4% (X" X+y"y)+0.25% (X" x+y"y

304
20 ‘
104

07

103

)" (x"x+y"y)




Lagrangian with two scalar fields + symmetry breaking

2
™m
¢%+¢%=ﬁ

1 1

£ = 5(0u00)(@61) + 5mPd} + 5(2,62)(20) + Gm*6} — 1163 + 63)°

Let’s pick @1 =m/k, P2=0,and 7= ¢1 —m/k
expand around that ¢1 =1+ m/k
0 = ¢

1 2 2

1 1 m m 1 m m
_ - L - L L 92,9 T m 2\ 122 N m 212
L 2(a,m)(a n)+2(aue)(a 9)+2m (n* + 13 +2kn+9) 4k (n* + 13 +2kn+9)

1 1 1 m?* _.m
L= 5(0un)(@"n) + 5(0u0)(2"0) + 5m* (0 + 75 + 250 +6°)=
:ICQ 4 2 2 3 2
Z(n4 - % - 4%772 +0* + 2772% - 4773% + 2020 + 4%77 - 2%92 - 4%7762)



Lagrangian with two scalar fields + symmetry breaking

1 1 1 m?
— (0 e I 49 2
£ = 5(0un)(0"n) + 5(0.0)(0 9)+2m (n” + 2 T k77+9)
k‘2 4 2 2 3 2
— (n* +%+4k—n + 0%+ 22 o) + 4n® - +2"292+4k3n+2ﬁ92+4kn92)

Remove constant terms and combine

1 1 1 m
£ = S(@um)(@n) + 5(3,6)(06) + SmP(n + 27y + 67)—
k2 4 m? 2 12 m? m? 2 m.- .o
4(n + 6 +6k2n + 493 ?+2n9 +4k3 2ﬁ9 +4??79)

Combine more terms

1 . 1 y k2 k2 k2 5, )
L= 5(0m)(0"n) + 5(0,0)(0"0) — m?n’ _Z” - — kmap? — 5 070" —mkno



Lagrangian with two scalar fields + symmetry breaking

1 L 1 " 2 2 ]‘324k24 3]“3222 2
£ = 5(0un)(0"n) + 5(0,0)(0"0) —m™n” — == — =07 — kmay” — 070" — mkn6

Let’s rewrite this

1 " 2 2 1 " k* o K, 5, ko o 2
L= 5((%77)(0 n) —m*n~| + 5(%9)(5 0)| — 7 +ZQ + kmn —1—76’ n* + mkn6

my, = vV2m | One of the fields massless! Why?

e = And have new vertices:

6

N neg O ; o 9 °
» » o . o



Massless field

L= [%(@m)(ﬁ“n) — m2n2] + [%(&,ﬁ)(&“@)] - [%774 + %94 + kmn® + %82772 + mkn@ﬂ
my, = v 2m _
! One of the fields massless! Why?
meg = 0
-4*(x*x+y'y)+0.25’(x*x+¥*)f)_f(_1)f*x+y*y)
Continuous global
symmetry!
Goldstone’s 0] §
theorem - have you g N
seen this?

Massless in direction where potential does not
change, massive in orthogonal direction



Massless and massive field

47 (X*X+Y*Y)+0.25% (X X+YTY) (X" X+Y™Y)




Two scalar fields with spontaneous symmetry breaking

1 1

£ = 3(0u61)(061) + 3mP6} + 5(8,02)(0"00) + 3mP¢} — 1K (6} + 63)°

Rewrite this as a single complex field

¢ = @1 + i

1 O*p = ¢%1+ 5 1
L= 5(%@*(5“@ + §m2(¢*¢) — Zk2(¢*¢)2



Now we want to apply local gauge transformations

L=

¢ = @1 + 1o

1 O*p = <b%1+ 5 1
L= 5(%@*(5“@5) + §m2(¢*¢) — Zk2(¢*¢)2

Can get this:¢ L i)

If we make 0, — D, =0, +iqA,
this change:

(B +igA,)01" (2" +igA")9] + 5m2(6%6) — K(6"0)° — 7 F"

l\')lr—\

Interaction terms for
new massless field



Writing out our Lagrangian

(00— ig4,)0"] (0" + igA")6] + 5m2(6%6) — TK(6%0)* — o F*Ey

L =

N | —

Again expand about real n=d, —m/k
minimum (has not changed b1 =1+ m/k
due to adding gauge b = b

symmetry):

The F terms do not change via this
transformation. And the m? and k? terms
were calculated by us a few slides ago.
So let’'s work out the nasty first two terms



The ugly pieces

1 1

(60— ig4,)0"] (2" + igA")] [+ 2m2(6%6) — TK(6%0)* — o F*Ey

n=¢1—m/k
¢1 =17 + m/k
| Y = @2
10 — i0A4,)6*] (2" + iqA")o)

L =

DY | —

1

- [0 — igA,) (61 — i2)] [(2" + igA") (61 + ic2)]

Can already get apprehensive about the
algebral



The ugly pieces

1

9 [(0 —iqAL) (@1 —ig2)] [(O +iq A" ) (91 + id2)]

1 . . .
5 10,1 — 10,2 — iqA D1 — QA P2 [0F 1 + 10" P + iqAY p1 — g AV @2

1 . .
5[5;@15“% +10,010" P2 + 1qA" 910,01 — qA" 20,01+

—10,020" 1 + 0,,020" P2 + gAY 910,02 + 1qp2 A" 0,02
—iqA, d10" 1 + qA, D10 o + AL AP G +iqP A AP pr o+
—q A, 20" P1 — iqAD20" Py — iq° P2 A A D1 + ¢ A AP GS]
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Simplifying things

1 . .
0,10 b1 + 00, QK0 P2 + @6114%,@1 — qA" 920,01+

2
—10, $80" P1 + 020" o2 + qA" 910,02 + iqPo P2
—iq AL K" 1 + qAL P10 Ppo + P AL AV BT + it A, 12+
_C]Au¢25 1 — Z.QA/LM(W — iqz%fl“(bl +q AHAM¢§]
1
5[@@16‘%1 — qA" 920,01+
0 @20" P2 + qA¥ 910,02+
qALG10" b + ¢° A AP T+
—qA$20" 91 + ¢* A, AV §3]



Simplifying things
1
2

10,010" 1 — gAY 920,91+
0 P20" @2 + qA" 910,02+

un¢1&M¢2 T q2AuA'UJ¢%+
—qA,P20"P1 + QZAMAMCb%]

% [0,010"G1 + 020 2 + ¢° A%(7 + ¢3) + 2 A" (910,d2 — ¢20,61)]

Now let's apply n= o —mfk
this and remember b1 =1+ m/k
that we don't care 1 " ! 4

= Q2

about derivatives of constants
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Putting it all together

% [0,010" b1 + 020" 2 + ¢° A%(7 + ¢3) + 2 A" (h10,d2 — ¢20,61)]

Now let’s apply n = ¢ —m/k
this and remember b1 =0+ m/k
that we don't care
about derivatives of constants Y =9

1 m? 2m

~[0,n0"n + 0,1ty + quQ(w 0+ o7 o)+
2qA* (01 + — - Out = $0un)]

Now let's add in our mlssmg pieces from
the full Lagrangian

(00— igAS 1L +igA")g] + 5 (8°9) — (K (9*6)* — 1 F" Fy

2

L =

DO | —



Putting it all together

@) iR | 4| S @) |+

q? A? m? 2m

_|_

(W0 + 5 o)+
QA“(U&MD"‘ Ot — Y0un) |+

k2 k2 k2
[477 +zw +km77 +777¢ +ml~cmp]

FRrYE L
167

Let’s rewrite all of that



875

Putting it all together

Massive field as before Massless field as
~ J before
1
@@ - |+ | 5@+
Gauge field 2 A2 2 o

description >t 5 W+ 5+ )t

Interactions <— qA* (0 + — 7 OnY — Yaum) |+

between f2 L2 L2
scalars [ 1 n' + —¢ + kmn® + o 1 % + mkny ]
and vectors FHE,,

167



876

Most importantly

Mass of scalar field, scalar field self-interaction strength and
Interactions between scalars and vectors not all independent!

1 1
@) — iR | 4| S @) |+
Vector 2 42 2 9
fieldnow > o—(6 +n® + T+ =)+
has a mass!!!!

qA" (00,00 + 70,0 — Vi) +

4 2
FRYE,L
167

k2 k2 k2
[ 77 +—¢ +km77 +—77¢ +mkn¢]

Scalar field self-interactions



Finally we get to the Higgs Lagrangian

L= 5 (D) (D"9) = V()

¢:<¢+>:L<¢1+Z¢2>
¢° V2 \ @3+ 14

V() = n?¢'¢ + Ao ¢)°

It's a complex scalar doublet - one field has
electric charge (will be giving mass to the W
bosons) and the other is neutral (giving mass to
the Z boson)



Minimum of potential

1 2 2
816 = (07 + 93+ 03 +¢) = 5 = — 5

We know that in the ground state, after symmetry
breaking, photon remains massless. So ground
state should only contain electrically neutral piece

among all 4 directions. Now ¢(vacuum) —
we are going to choose one ﬁ U

direction, breaking the
symmetry! (Other 3 directions s 1 0
are going to give mass to W+, —

W- and Z) Compare with our \/§ v+ h(SL‘)
Mexican hat previous

examples

Note original symmetry 1 ( 0 )



Higgs potential

Ol = (€b1‘|‘¢2‘|‘¢3‘|‘¢4) — -
V(g) = 1’¢'¢ + ' 9)?

*%@ﬁz(x))

2
A
V(g) = % (v* + 1%+ 20h) + 7 (07 + 2%+ 4°h% 4 20°h% + dv°h + doh?)



Higgs potential

2
A
V(g) = % (v° + 1%+ 20h) + 7 (0% + 2%+ 4°h% 4 20°h% + dv°h + doh?)

Keeping terms only up to second order in h and
ignoring constants

T A
V(p) = 03 (h? + 2vh) + = (6v°h* + 40v°h)

al
02 12
2 2)
.2
V(p) = ;v (h* + 2vh) + % (6v°h* + 4v°h)

V(¢) = 2w’h® Higgs boson mass term!



On the vacuum

You might hear about the Higgs field’'s non-zero
field, or “"vacuum expectation value” (or “vev”).
Find a very simple relation between W boson

mass, weak coupling gw and v... calculate v = 246
GeV!

b(vacuum) — \% ( ’ )

0= 75 (veh )



After applying local gauge symmetry

Previous symmetry that we demanded was a U(1)
local gauge symmetry. Now we ask for the
Lagrangian to respect the symmetry of the

electroweak theory, namely [SU(2)L x U(1)y]

Find that the W* and Z
bosons obtain mass
through the breaking of the
symmetry. We just found
that the vacuum has
massive excitations (Higgs
boson!)



Full Higgs Lagrangian

L= 3 (D) (D 6) ~ V()

Want to pick the covariant derivative so that it
also respects [SU(2). x U(1)y] symmetry

D, = 0, + igwT - W, +ig B,

1 (D ¢> _ 1 iQWWSH + ig’BM -+ 8M -z'gWWm -l—.ngQ,uJ 0
2\/5 : 2 ZQWWLu - gWW2,u _@QWWBM + Zg/BM + 8u v+ h

L(D )) = b [ (v + h)(igw Wi, + gwWay) ]
2,2 " 22 | (—igwWsyu +ig' By + du)(v + h)



Full Higgs Lagrangian
1 [ (U + h)(igWWm + gWWQM) ]

(—igwwgu + ig/Bu =+ &’M)(v + h)

1
2\/‘( M¢) \/‘

5 (Dud)) (D) =

[(U + h)(—iQWWm + gWWQ,uJ) (igWWB,u — ig/Bu)(U + h)] X
(v+h)(Egw Wi + gw Wy
(—igw W3 +ig'B*)(v + h)

5 (D) (D) =

1
2 (v + h)* (9o Wi WL + goy Wo, W) + (v + h)* (95 WapWE — ¢’ gw B,WL — ¢’ gw B*Ws,, + ¢'* B, B*)

1
8

T+ _
Recall that: W,u o

1, 1172
(WﬂizWM)

-



Full Higgs Lagrangian

1
8

(D)) (D"9) =
(v + 1) (g Wi WH + gy Wa, W5 + (v + h)* (g3 Wa Wy
P
Recall that: wo \/i

— 99w B, W4 — ¢'gw B" W5, + ¢ B, B")

1 12
(W, £iW})

Mass of W1, W2 given by:

1
2

1

I
M oW1 2Wi, term: gV

1

mw = —quw U
W 29W

2912/VW 2W1M2



Full Higgs Lagrangian

1
8

1
(D)) (D"0) =
((v+ h)* (g Wi W1 + gl Wa WE) + (v + h) (g3 WspW4' — o' gw B,WY — ¢’ gw B*Ws,, + g”° B, B")

Quadratic terms for spin-1 fields: Mass matrix M

2 /

v g —gwd w4
g (WM,3 Bu) ( _gWg/ g/2 ) ( B’i

det(M — AT) = 0 — (g5 — M(9” = A) — gipg” =0

A=0,\=g7 +4g°



Eigenvalues for neutral gauge bosons

Mass terms diagonalized:

’02

0 0 A
8 (A“Z“)< 0 9" +giv ) ( zZ )

1
ma = 0,mz = 50\/9’2 + gy

Photon remains massless, but have a massive Z!



Eigenvectors for neutral gauge bosons

First eigenvector:

( T —gwg’)<p)
—gwyg  g” q

/

g
pgy — gwg'q =0 —p = o gW;: + gw B,

/ 3
Normalize: A — 9 WM T gWB:u
H \/912/[/ _|_ g/2




Eigenvectors for neutral gauge bosons

Second eigenvector:

(g%v—gﬁv—g@ —gw g’ )(p)
—gw g’ g% —gi — 4" q

gw
—pg” — gwg'q=0—p = g 17 o= gwW; —g'B,

Normalize: QWW[? B g,B'“
RN/




Neutral gauge bosons

gW: + gwB, gwW; —¢'B,
Ay = 2 12 Ly = 2 2
VI + 9 Vi + 9
/
9 _ tan Oy — \/912/1/ + g% = \/g%V +g‘2,vtan2(9

qw
2 9 2 2 W
2+ —\/ 1 + tan2 6) =
\/g g g‘/]/'( 1 ) COSQ

gWiH+gwB,  cosO(g'W,! + gwB,)

A - _
N gw
/
A, = cos H(j—WWEZ + B,,) = cosf(tan HWB + B,,)

Exactly what we o 3
proposed earlier! AM S111 HWM =+ COS QBM



Neutral gauge bosons

A gW: + gwB, 7 gwW; —¢'B,
—_— w =

SN e V9 + 97
/

9 _ tan Oy — \/912/1/ + g% = \/g%V +g‘2,vtan2(9

aw
2 /9 2 2 gw
-+ = \/ 1 4+ tan“ @) =
\/gﬂ/ g g‘/]/'( ) COSQ

gWW3 _ g/B,u cos 6
Z, = 5 = = (QWW,ff — Q/Bu)
N gw

g’ cos 6

Z,, = COS HWS — B,, = cos HW;Z —cosftanbb,,

agw

Exactly what we 7 — COS HWS _ <inHB
proposed earlier! M i %



In addition

gw 1
\/g%v gt = ma=0,my= 5@\/9’2 + gy

_ Ugw 1
So that myz = 2 cos f From before 71y = ing
mw
—— = cos 6,
mz

Plug in measured values and find v = 246 GeV



Similarly

Find that mass terms for the fermions do not
observe the [SU(2)L x U(1)v] symmetry. But
interactions with the Higgs field allow them to
obtain mass in the same way!

ﬁfermion mass = —Af [JLW?R + angL]

b(vacuum) — \% ( 2 )



Fermion mass term for electrons (example)

Lformion mass = —Af [@Lﬁb?ﬂR T @R&DL]

_ 0 y Y
Lfermion mass = ~Af [(V’ )L ( v+ h > er +er(0,0+h) ( € >L]

/

Fermion-specific Higgs Yukawa coupling
Ltermion mass = —Af [€L(v + h)er +€r(v + h)er]

L:fermion mass — —)\f(’U + h) [ELQR + ERGL] = —)\f(v + h)(ée)



Fermion mass term for electrons (example)

Ltermion mass = —f (0 + h)[erer +erer] = —Ag(v + h)(ee)

= —)\fvée + —)\fhée

/

Electron mass term

Lfermion mass

Electron-Higgs boson vertex, with interaction strength
proportional to Higgs mass (very small)

Note something - where did the neutrino mass term go?



Some thoughts on Fermion masses

We have a new idea of mass in particle physics - how much the
object has a well-defined helicity. This is measured by chirality

We’'ve seen that the left-handed electron and right-handed
electron are different objects (the first interacts with the W
boson, the second does not)

Similarly, the left-handed positron and right-handed positron are
different objects (the second interacts with the W boson, the
first does not)

The Higgs field contains weak charge, and the non-zero value of
the field allows a left-handed electron to convert to a right-
handed electron. It’s just like any other Feynman diagram,
converting one object into another



The Hierarchy problem

Find that diagrams like this (with any objects running through the loop) contribute to the
Higgs boson mass and self-energy. Naively, these can have energies up through the
Planck scale (101° GeV). But the Higgs boson mass is only 125 GeV - why?!?! Some
diagrams cancel with opposite sign, but getting a ~102 number from integrals involving
1019 is: 1) lucky, 2) coincidence, 3) pointing to some hidden, deep symmetry.

One strong motivation for supersymmetry (SUSY), among other theories. In SUSY, every
SM boson has a SUSY boson counterpart (bosino), and every SM fermion has a SUSY
fermion counterpart (sfermion). This symmetry is obviously broken, but these then have
opposite signs in cancellations and can explain the small Higgs boson mass (and thus
the small electroweak mass scale).



