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On to a new topic

Non-inertial frames
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On to a new topic

For fans
of xkcd
and 007

HOW DO YOU LIKE MY CENTRIFUGE,
MISTER BOND? WHEN ! THROW THIS
. LEVER, YOU WiLL FEEL CENTRIFUGAL
R FORCE CRUSM EVERY BONE IN

o YOUR BODY.

:
h

YOU MEAN CENTRIPETAL FORCE.
THERE'S NO SUCH THING AS
CENTRIFUGAL FORCE.

A LAUGHABLE CLAIM, MISTER BOND, PERPETUATED
BY OVERZEALOUS TEACHERS OF SQENC(E-
SIMPLY CONSTRUCT NEWTON'S LAWS IN A ROTATING
GYSTEM AND YOU WILL SEE A CENTRIFUGAL fORCE
TERM APPEAR AS PLAIN AS DAY.

/

COME NOW, DO YOU REALLY EXPECT
ME T0 DO (0ORDINATE SUBSTITUTION
IN MY HEAD WHILE STRAPPED

T A CENTRIFUGE?

NO, MISTER BOND.
| EXPECT YOU T0 DIE.

\




Starting from non-rotating non-inertial frames

Standing on the ground
(in inertial frame):

meZF

The velocity vo of the
pendulum
as seen from the ground:

V/A
—

Vv Is velocity as
seen in the train

/

mv = mvg — mA

mv =F —mA

—>

Vo =V + V
vo=v+V Note minus
v=vyg— A sign

~>
Finertial — @mA



Starting from non-rotating non-inertial frames

Deceleration Acceleration

Deceleration pushes driver against belts Acceleration pushes driver into seat
’



Starting from non-rotating non-inertial frames




Starting from non-rotating non-inertial frames




A fun side problem

Helium
balloon

Air gets accelerated too... pressure gradient
pushes balloon to the right



Let's work out Example 9.1

First let’s follow the book...
and then what happens
in the Lagrangian formulation?



Let's work out Example 9.1 in an alternate way

1
r = —[sinf + iatQ
y = [(1 — cosf)
i = —lcosff + at

2 = 2 cos? 9H? + a’t? — 2atl cos 00

V/A yzlsinﬁé

—> % = 12 sin® 06>

@ \ Amtrak

m . .
L= (@ +§°) —mgy

L= %(1292 + a?t? — 2atl cos 00) — mgl(1 — cos6)
a—ﬁ. — mi?0 — matl cos 0
00
g—'g — matl sin 00 — mgl sin 0

d : ;
7 (m126’ — matl cos (9) = matlsin 00 — mgl sin 6



Let's work out Example 9.1 in an alternate way

V/A

—

o & Amtrak

d : :
7 (ml29 — matl cos 9) = matlsin 80 — mglsin 6

ml%6 + matl sin 0 — mal cos @ = matl sin 66 — mgl sin 0
ml?0 — mal cos § = —mgl sin 6
120 = al cos ) — glsin @
0 = (a/l) cosO — (g/1)sin b



What's the equilibrium?

V/A

—

o & Amtrak

f=0=(a/l)cos — (g/l)sinh —
gsinf = acos6

tanf = a/g



Let’'s move on to something more tricky - the tides




Tides (incorrect)

This picture is wrong! There are ~2
high tides per day. Tides are not due to
the moon “pulling” at the water

@



Tides (correct)

Tides are due to the differential force between
the moon/sun and the earth’s center of mass
vs the moon/sun and the water, which is not
at the center of mass. But CoM and the water

are both accelerating! In other words, tides
are due to the difference in inertial force vs
position

A

-

_:’ Satellite mum— (/\,\ '
g
. A

v

v




In other words
Gravitational attraction towards moon

». » Moon ‘

e

Difference between force at CoM




Let’s calculate this using a non-inertial frame
standard attraction to earth

mv = F —mA
Origin O GMg
S M —mg
/ o
— —5 standard grav.
01 attraction to moon
(9
d Centripetal
A = —GMm? / acceleration of frame

) . d d
mr = mgr — GMmmﬁ + GMmmd—g



Let’s calculate this using a non-inertial frame




What is the potential energy associated with the tidal force?

Frig = —VUg

2 1
Uia = —GMym ( ;’; a)
Is this clear? ___—

Ocean surface is equipotential

h is height difference
between high and low tide

Utid(P) + Ugrcw (P) — Utzd(Q) + Ugrcw(Q)
Utid(P) — Utzd(@) — Ugrav (Q) T UgrafuP — mgh



What is the potential energy associated with the tidal force?

m U(P)—-U(Q) = —mgh

1
Utid = —GMmm <£2 + —>

2
At point Q, d = A/d3 + 12 ~ 4/d5 + R?

x(Q) =0 O) = — e 1
Umd(Q) = GMmm d% + d(2) n Rg

That clear? —

d3 + R?
G My, m !
Utia(Q) = — do <\/1 + (Re/d0)2>
Usa(Q) = =2 (14 (Refdo)?) ™




What is the potential energy associated with the tidal force?

m U(P)—-U(Q) = —mgh

xT 1
U,g = —GM,m | = + =
tid m(dgu)

At point P, d =dy — R.,x = — R,
Uiia(P) = —GM,,m ( djge + i _1 Re)
- GM;m (—Re N 1 )

do do 1 — Re/dy
GM,,m [ —R
_ ( -

Utia(P) =

4+ 1+ R./dy+ (Re/d0)2)>

Una(P) = =2 (14 (Re/do)?)




Putting it together




Plugging in the numbers

S
A = 3 M,, R

h = —
G - g 2M€ d%
d

h =54 cm (moon)
h =25 cm (sun)

Of course, this is a
simplification, including land,
seasonal and depth effects
(not to mention wind)
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On to frames with rotation




On to frames with rotation

Don’t forget
the right-
hand rule

—

W = wu

“~~ Can imagine situations where any of
these are constant, or functions of time

S~



On to frames with rotation

k
A

r = (acosf,asinf, h)

V=r= (—aé’ sin 6, af cos 0, 0)

A

r w =0z

v=w X T

v =wrifd-r=>0



We can use this to say more

k
A

. dr
V—er—ﬁ

d
>d‘z=c3><e

For any vector e, including
unit vectors



Addition of angular velocities

vij = velocity of frame i relative to frame |

V31 = V32 + Vo1

(031 ><I‘=(Dgg><1'-|-(ﬁgl ><I'

w31 X r= (W32 +Wa1) Xr

— W31 = W32 + W21
wij = angular velocity of frame i relative to frame |

Vectors add just as translational vectors



Time derivatives in a rotating frame

Consider an inertial frame of references defined
by So and a second frame (of interest) S with
shared origin, but rotating with respect to So with

angular velocity Q

For example (Taylor) O
has origin at enter of
earth, So Is axes fixed
to distant stars, S is
non-inertial (earth
rotates)

Earth’s angular speed of rotation:

Q=7292x107s"




Time derivatives in a rotating frame

(—) = rate of change of Q relative to inertial frame S
So

d
(d—?> = rate of change of Q relative to rotating frame S
S

1=3
Q = Qie1 + Q262 + Qses = Y Qe
1=1

dQ\ 1 dQi
(E)S_Z dt

1

valid in both frames, f
though ei are constant Since ej are
in S but not in So constantin S



Time derivatives in a rotating frame

d
(d—?) = rate of change of Q relative to inertial frame Sy
So

d
(d_?) = rate of change of Q relative to rotating frame S
S

ol




A quick exercise

Let's do
Problem 9.7
together



Now we can move back to Newton’s Laws




Need some simplification

(), = () [ () - o] s (), +

Evaluate in frame where Q const, so d/dt(Q) =0

Dots are with respect to rotating frame S

/

(flz')so—f+25><x‘-+ﬁ X (2 X 1)



Putting it together

d? = . = =
m(ﬁ) =F =mr+2mQ X r+m X (2 X r)
So

Changing cross product order cancels
minus signs...

mi = F +2mi X Q+m(Q X r) X O

/ /

Coriolis Force Centrifugal Force




Coriolis force and centrifugal force

mi = F +2mi X Q+m(Q X r) X O

/ /

Coriolis Force =0 Centrifugal Force
ifv=20

mit=F 4+ 2mi X Q+m(Q X r) X Q

V ~rQ ~ Eeor ~ muf? V ~ Vv as seen
speed of For ~ mTK;Q\ on rotating
rotation on F.. v v earth

N ——— N —

earth ~1000 F;, rQ |V
mi/h -




A quick exercise

Let's do problem 9.8 together.
Tricky! Let’'s define a coordinate
system. x = easterly, y =
northerly, z = up (ie radially out).
What is Q at equator? y
direction

What is QQ near (but not at) the
north pole? Mostly z direction,
but a little y direction

What is r? Always z direction



Centrifugal force

Centrifugal force

modifies gravity

(tangential component
towards equator and
reduces overall magnitude)

0 =02

On earth, r points from
center (origin) to
where we stand




Centrifugal force

r=rz— At poles, no
QX 1) X Q=r0%2z X 2) X 2=0 effect at all




Centrifugal force

r =rx —

QX 1) X Q=r0%z X %) X 2 =r0% X 2z =r%% = Q°r

At equator,
centrifugal force
IS In exact
opposition to
gravity, with
magnitude RQ? =
0.3% of gravity




Centrifugal force

r=rx —

QX r) X Q=r0%z X %) X 2 =r0% X 2z =r%% = Q°r

At equator, centrifugal
force is in exact
opposition to gravity,
with magnitude RQ? =
0.3% of gravity

/

- __,,/ ‘\,‘Laeutude

¢ But off the equator,
the direction changes,
too ...
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What is the centrifugal force?

Some might refer to it as “fictitious” but that is a bit
unfair to it! It's a result of the inertia of the system
as it is continually accelerated in a rotating
system. It draws the system away from the center
of rotation (ie away from Earth, for example)

...........

Merry-go-round’s rotating frame of reference Inertial frame of reference

(@) (b)



More with centrifugal force

More familiar formulas:
v=0Xr On earth, r points from

center (origin) to

v=Qr
, where we stand
F.r=mv/r . R
() = Oz
r=rx —
QX r) X Q=r0%z X %) X 2 =rQ0% X 2z =r%% = Q°r
r=ry —

AX 1) X Q=rQ%z X 3) X z2=—10%% X y=rQ% =0
r=rz—

QX)X Q=rzX2) X2z=0



Angle between “apparent” and “true” gravity

3 a=Angle between combined
force and pure gravity

Fjrav = (—gsiné,0,—gcos0)
F.., = (W?Rsin#,0,0)

F = (—gsinf + w?Rsinf, 0, —g cos )
F-Fjran = |Fgrav]|F|cosa
F-Fjo = g*sin? 0 — gRw? sin” 6 + ¢° cos®
F-Fjo = g* — gRw?sin” 6
Fgrav| =g

F| = \/92 sin® @ + wtR2sin® @ — 2gRw? sin* § + ¢2 cos2 @

F| = \/92 + wiR?sin? 0 — 2gRw? sin” 0



Angle between “apparent” and “true” gravity

% Fjrav = (—gsind, 0, —gcos0)
F .., = (W?Rsind,0,0)
F = (—gsinf + w?Rsin#,0, —gcosf)
F-Fgro = |Fgravl||F|cosa
F-Fgo = g*sin® § — gRw? sin? 6 + g cos® 6
F-Fyraw = g° — gRw?sin® 0
Fgrav] =g

a=Angle
between |F| = \/92 + wtR?sin? § — 2gRw? sin” @
combined force o = gRe?sin 0

and pure graVIty gV g% + wiR?sin® 0 — 2gRw? sin” 0

92 - ng2 sin? 6 ( wiR?sin?0  2Rw?sin? (9)
cosq = 1+ .

|F| = \/92 sin? 0 + wiR2sin? § — 2gRw? sin® § + g2 cos? §

—1/2

2 2

5 g g g
R ~ 000389 — | onran (| moainy
cos o ~ 5 1—
g g
( Rw? sin2«9> ( Rw? sin2«9>
cosa~[[1— ——— 1+ ——
g g

R2w4sin 0
cosa ~ [1— 5
g



Angle between “apparent” and “true” gravity

% Fjrav = (—gsind, 0, —gcos0)
F .., = (W?Rsind,0,0)
F = (—gsinf + w?Rsin#,0, —gcosf)
F-Fgro = |Fgravl||F|cosa
F-Fgo = g*sin® § — gRw? sin? 6 + g cos® 6
F-Fyraw = g° — gRw?sin® 0
Fgrav] =g

a=Angle
between |F| = \/92 + wtR?sin? § — 2gRw? sin” @
combined force o = gRe?sin 0

and pure graVIty gV g% + wiR?sin® 0 — 2gRw? sin” 0

g2 — ng2 sin® 0 wiR?sin?0® 2Rw?sin’ 6
COosSx = g2 1+ 92 — J

2 ___—-—'—“?
Rw ~ 00039 e gz—ng2sin29 (1_ 2Rw2sin29>1/2

2

|F| = \/92 sin? 0 + wiR2sin? § — 2gRw? sin® § + g2 cos? §

—1/2

g g

R2(.U4 2 12 2 .. 2
4qg p p
2 2 2 4 .4
COS:le—x——>cv=—Rw ~ 0.1° cosoz"“(l—Rwsln 0)
2 2g p



Coriolis Force

This one iS_ a bit more Gaspard-Gustave
difficult to picture, butis cqriolis
again due to the fact that we
are in a rotating frame, and
our intuition about inertia
only holds in a non-rotating
inertial frame

Note: if v=0, no Coriolis
force!
And if v is parallel to Q, also

no Coriolis force .
F.or =2mr X Q =2mv X



Coriolis Force

Fe.or =2mr X Q =2mv X
0 = 7.3x10"°s 1
Fmet B = (1.5x107°) (v)

v = 67 km /s for Coriolis force to equal grav force!



A simple but useful problem

Let’s look at example 9.2
together



Coriolis Force in a picture

As it travels north, orange
projectile travels further
eastward than the earth
beneath it

As it travels north, yellow

projective travels less
eastward than the ground
beneath it

Curve to the right in northern
hemisphere, to left in
southern hemisphere



Coriolis Force in another picture

What about red projectile? It
Is traveling faster now than

t
t
t

ne ground beneath it and
nus it will want to fly out/off

ne earth (inertial Coriolis

force is up)



On coordinate systems

In these discussion, we sometimes need to be
careful about our choice of latitude vs colatitude.
Subtle but important. When the book uses 6, it’s
typically using colatitude, ie the angle from the z
axis, which runs from O (north pole) to 180 (south

pole). Geographers typically use the latitutde, which
runs from +90 (north pole) to -90 (south pole)
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Particle in free-fall

Include centrifugal force in g Coriolis term

.e N ./
r=g—2w Xr

Lti‘dtzJot[g—QcEXf]dt
r—r(0)=gt—2J0 X r+20 X r(0)
/I":gt—2c3><r+2c3><r(0)

Let’s start particle from rest (ie dropped from
rest), sov(0) =0

Let’s plug the last line into the first line ...



Particle in free-fall

r=g—20 Xr
r=gt— 20 X r+2d X r(0)
r=g—2w0 X (gt—2c3><r+2c3><r(()))

r=g—20 X (gt+2<3><(r(())—r))
/!

small compared to gt

r=g—2tw X g



This we can solve

r=g—2td X g
t t
detzf [g—thU)(g]dt

0 0

v(i0)=0 %I‘(O):gt—t%?)(g

rfdtzf [gt—tQJJXg]dt

0 0

1 1
r(t) —r(0) = §gt2 — §t3u7 X g
1

1



How to interpret

1 1
r(t) = —gt* — =’ X g+ r(0)

2 3
Define coordinates with x = easterly, y = northerly,

z = up (ie radially out) Assume we're

«— on the
r = (Xayaz)s g = (O’O’-g)’ W = (O,C0,0) equatOr

If we drop a particle down a well over depth h
r(0) = (0,0,R+h) where R is radius of earth

1 1 Deflection in easterly
- = —wgt’x . .
3" X8 39" % direction!



Deflection in the well

1

L 5.
r(t) = §gt2 - §t3w X g+ r(0)

Deflection still quite small, so t for descent down
the well is given by standard formula of

t =+/2d/g ~/2h/g

1 1
133 — —wgt’x
3 X g JWI

1
Deflection = gwg(Qh/g 3/2A \/8/ (99) whS/QA

h=100m (well) - 2.2 cm
h =2 km (skydiving) — 2 m



Another quick exercise

Let’'s do
problem 9.9
together



Foucault pendulum

O
--q.?‘-

At Chicago’s Museum
of Science and Industry




Foucault pendulum

Pendulum with length L

mr =mg—20 X r+T

* +y? + 2% = L7
T, ~ T(z/L)
T, ~T(y/L)

T, ~T(z/L)
1, ~mg




Foucault pendulum

Pendulum with length L z(up)

@ = (0,wsinf,w cosh) B

T =—gx/L + 2ywcosf — 2Zwsin b

y = —gqgy/L — 2wz cos b
For small oscillations, / T
expect vz small

)
T = —gx/L + 29w cos b l m
y = —gy/L — 2zw cos mg

wi = g/L,wcosf = w,

T — 2w,y +wir =0

i+ 2w, + wiy =0



Solution using earlier trick with complex numbers

i — 2w,y + wiz =0
i+ 2w, 4+ wiy =0
Sum "T=*TW 5

. oo . . - 92 L
[ Y+ 2w, x + wwgy = 0 y(north)
T4 iy + 2w, (it —9) +ws(z +iy) =0

1+ 2iw,n + win = 0 T

m

—a? + 2iw, (—ia) + w2 =0

o(t) = e x(east) l

—a® 4 20w, +wi =0

o — 20w, —wi =0

o = <2wz i\/llwg —|—4w8) /2 Wy =>=> Wy —

o~ W, T W
a~w, + /w2 + wi

mg




Solution for pendulum

W, = wcosf

| Z(u
n(t) = e (P)
a~ W, T wo B
n :e/z’wzt (Cleiwot + 02€—iw0t) y(north)
What does this term / T
do? X(east) m

Let’s check (as in the book)

what happens if at t=0, v=0, x=A, y=0 (so that
C1=C2=A/2 - let’'s see why). Take a close
look at Fig 9.17



Solution for pendulum

W, = wcosb Wo >> W, z(up)

n(t) = z(t) + iy(t) = Ae = cos (wot) [P

At first, natural frequency

much larger than the extra / T
term in front, but

eventually, that rotates X(east) m
motion in x direction to y l

direction and back

y(north)

mg



Rotation of the plane of the pendulum

At first, natural frequency z(up)
much larger than the
extra term in front, but S
eventually, that rotates y(north)

motion in x direction to y
direction and back. / T
Chicago co-latitude =

48.2 degrees, SO Wz = X(east) m
wcos(48.2 deg)=2/3 (360 l

degrees/day) = 240
degrees / 24 hours

90 degree rotation (complete shift toy
direction) in just 9 hours!

mg



One last word on these subjects

Recall from earlier in the course:

F, = m(i — r¢%)

Fy = m(27p + r¢

Choice of
frame
determines
whether
accelerations
or forces are
complicated
(alternatively,
which one is
simple)



Homework (due as usual in 1 week)

9.2, 9.14, 9.25,9.206, 9.28, 9.29



