
254Armed with Newton and Lagrangian mechanics...

Let’s tackle a new problem (chapter 8 of Taylor)



255Two-body central force motion

1

2

m1

m2

Origin
r2

r1

R =
1

M

↵=NX

↵=1

m↵r↵, M =
X

m↵

Center of Mass

Recall this from earlier in 
the course, now only with 
two particles

R =
m1r1 +m2r2
m1 +m2

M = m1 +m2



256Two-body central force motion

1 2
m1 m2

O

r2r1

F12

F21 = -F12

Recall definition: If 
internal forces are 
along vector 
connecting particles, 
we call them central 
forces

R =
m1r1 +m2r2
m1 +m2

M = m1 +m2



257Two-body central force motion

1 2
m1 m2

O

r2r1

r = r1 � r2

F12 = F (r1, r2)ˆr

F12 = F (r1 � r2)ˆr

F12 = F (r)ˆr

F21 = �F12

U(r1, r2) = U(|r1 � r2|)ˆr for conservative central force

U = U(r)



258What’s sorts of problems can we think of?
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260What’s sorts of problems can we think of?



261Writing down the Lagrangian

1 2
m1 m2

O

r2r1

r = r1 � r2

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 � U(r)

Note that we are starting out with 6 degrees of 
freedom! Let’s hope that we can reduce this



262Writing down the Lagrangian

1 2
m1 m2

O

r2r1

r = r1 � r2

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 � U(r)

Good news when using the Lagrangian 
formalism is that we can pick 6 generalized 

coordinates. Which ones?



263Writing down the Lagrangian

1 2
m1 m2

O

r2r1

r = r1 � r2

Center of mass 
of system gives 
us 3 potentially 
useful 
coordinates

R =
m1r1 +m2r2
m1 +m2

M = m1 +m2

CM

R



264Writing down the Lagrangian

1 2
m1 m2

O

r2r1

r = r1 � r2

P = MṘ

Ṗ = MR̈ =
X

Fext

Recall that CoM moves as:

Fext

= 0 ! Ṗ = 0

˙P = 0 ! ˙R = constant

Free to choose inertial frame in which 
center of mass is at rest

CM

R



265Two-body central force motion

1 2
m1 m2

O

r2r1

r = r1 � r2R =
m1r1 +m2r2

M
M = m1 +m2

r = r1 � r2

r1 = r+ r2

r2 =
MR�m1r1

m2

r1 = r+
MR�m1r1

m2

r1(1 +
m1

m2
) = r+

MR

m2

r1
m1 +m2

m2
= r+

MR

m2

r1
M

m2
= r+

MR

m2

r1 =
m2

M
r+R r2 = R� m1

M
r

Similarly, 

CM

R



266Does this tell us what we might guess already?

r1 = R+
m2

M
r

r2 = R� m1

M
r

For very large mass m1 >> m2, M=(m1+m2)~m1 
and r1 ~ R, r2 ~ R-r

1 2
m1 m2

O

r2r1

r = r1 � r2CM

R



267Writing down the kinetic energy

1 2
m1 m2

O

r2r1

r = r1 � r2CM

R

r1 = R+
m2

M
r

r2 = R� m1

M
r

T =
1

2

�
m1ṙ

2
1 +m2ṙ

2
2

�

T =
1

2

✓
m1

h
Ṙ+

m2

M
ṙ
i2

+m2

h
Ṙ� m1

M
ṙ
i2◆

T =
1

2

✓
m1


Ṙ2 +

m2
2

M2
ṙ2 + 2Ṙ · ṙm2

M

�
+m2


Ṙ2 +

m2
1

M2
ṙ2 � 2Ṙ · ṙm1

M

�◆

T =
1

2

✓
(m1 +m2)Ṙ

2 +
m1m2

2 +m2m2
1

M2
ṙ2 + 2Ṙ · ṙm1m2 �m2m1

M

◆

T =
1

2

✓
(m1 +m2)Ṙ

2 +
(m1 +m2)(m1m2)

M2
ṙ2
◆

T =
1

2

⇣
MṘ2 +

m1m2

M
ṙ2
⌘



268Simplifying the kinematic energy

1 2
m1 m2

O

r2r1

r = r1 � r2CM

R

T =
1

2

⇣
MṘ2 +

m1m2

M
ṙ2
⌘

T =
1

2
MṘ2 +

1

2
µṙ2

µ =
m1m2

M
=

m1m2

m1 +m2

Reduced mass 
(always smaller than 
m1 and m2)

For very large mass m1 >> m2, µ=(m1m2)/m1 ~m2
For equal masses µ=(m*m)/(2m) ~m/2



269What’s the meaning/signifiance?

1 2
m1 m2

O

r2r1

r = r1 � r2CM

R

T =
1

2

⇣
MṘ2 +

m1m2

M
ṙ2
⌘

T =
1

2
MṘ2 +

1

2
µṙ2

Kinetic energy is the same as energy of two 
particles (not real!):

1) Particle with mass M = m1+m2 moving with 
speed of the center of mass
2) Particle with mass µ moving with speed of 
relative position



270Let’s write down the Lagrangian

1 2
m1 m2

O

r2r1

r = r1 � r2CM

R

L = T � U =
1

2
MṘ2 +

1

2
µṙ2 � U(r)

L =
1

2
MṘ2 +

✓
1

2
µṙ2 � U(r)

◆

L = Lcm + Lrel

Only involves CoM velocity Only involves 
relative coordinate 

and motion



271With a Lagrangian, we can find the Equations of Motion

Center of mass moves
with constant velocity

Only relevant 
equation/non-trivial 

motion involving the 
force

M ¨R = 0 ! ˙R = constant

µr̈ = �@U

@r
= F(r)

L =
1

2
MṘ2 +

✓
1

2
µṙ2 � U(r)

◆

@L
@R

= 0 =
d

dt

@L
@Ṙ

= M
d

dt
Ṙ = R̈

@L
@r

= �@U

@r
=

d

dt

@L
@ṙ

= µ
d

dt
ṙ = µr̈



272We can simplify further

1 2
m1 m2

r = r1 � r2CM = O

Choose inertial frame with R at rest at the origin
M ¨R = 0 ! ˙R = constant

µr̈ = �@U

@r
= F(r)

r1 =
m2

M
r

r2 = �m1

M
r

Problem is now (for all m1, m2) only three-
dimensional. But consider the special case with 

very large mass m1 >> m2, µ~m2
and r1 ~ O, and r2 ~ -r. What does it look like?



273What about angular momentum?

1 2
m1 m2

r = r1 � r2CM = O

r1 “ m2

M
r

r2 “ ´m1

M
r

L “ r1
°

p1 ` r2
°

p2

L “ m2

M
r

°
pm1 9r1q ´ m1

M
r

°
pm2 9r2q

L “ m2

M
r

°
pm1

m2

M
9rq ´ m1

M
r

°
pm2

´m1

M
9rq

L “ m1m2

M2

´
r

°
pm2 9rq ` r

°
pm1 9rq

¯

L “ µ

m1 ` m2
pm1 ` m2qpr

°
9rq

L “ r
°

pµ 9rq

Total angular 
momentum of 
system in CM 
frame is just 
that of single 
particle at r 
with mass µ



274What does conservation of angular momentum tell us?

1 2
m1 m2

r = r1 � r2CM = O

L is a constant (because there 
are no external forces), which 
means it always points in 
same direction.
So our three-dimensional 
problem is now reduced to a 
two-dimensional problem 
(remember, we started with 
six dimensions!)

L “ r
°

pµ 9rq

Is this clear?



275Let’s finally write down a Lagrangian in detail

1 2
m1 m2

r = r1 � r2CM = O

BL
Br “ µr 9�2 ´ BU

Br
BL
B 9r “ µ 9r

d

dt
pµ 9rq “ µr 9�2 ´ BU

Br
µ:r “ µr 9�2 ´ BU

Br

Conservation of angular
momentum

L “ 1

2

µ 9r2 ´ Uprq

L “ 1

2

µp 9r2 ` r2 9�2q ´ Uprq
BL
B� “ 0 “ d

dt

BL
B 9�

“ d

dt
pµr2 9�q

µr2 9� “ l “ constant



276Let’s simplify further

1 2
m1 m2

r = r1 � r2CM = O

µr2 9� “ l “ constant

9� “ l

µr2

µ:r “ µr 9�2 ´ BU
Br

µ:r “ ´BU
Br ` Fcf

Fcf “ µr 9�2 “ l2

µr3

Fcf “ ´ d

dr

ˆ
l2

2µr2

˙
“ ´dUcf

dr

Ucf prq “ l2

2µr2

Centrifugal Force



277Let’s simplify further

1 2
m1 m2

r = r1 � r2CM = Oµ:r “ µr 9�2 ´ BU
Br

µ:r “ ´BU
Br ` Fcf

Fcf “ µr 9�2 “ l2

µr3

Fcf “ ´ d

dr

ˆ
l2

2µr2

˙
“ ´dUcf

dr

Ucf prq “ l2

2µr2

µ:r “ ´ d

dr
rUprq ` Ucf prqs “ ´ d

dr
Ueff prq

Ueff prq “ Uprq ` Ucf prq “ Uprq ` l2

2µr2



278Putting it together

1 2
m1 m2

r = r1 � r2CM = O

µ:r “ ´ d

dr
rUprq ` Ucf prqs “ ´ d

dr
Ueff prq

Ueff prq “ Uprq ` Ucf prq “ Uprq ` l2

2µr2

Radial motion of this fictional particle with 
mass µ behaves as if it was moving in a 
single dimensional effective potential given 
by the nominal one + the “fictitious” one



279Conservation of energy

µ:r “ ´ d

dr
Ueff prq

9rpµ:rq “ 9r
ˆ

´ d

dr
Ueff prq

˙

d

dt

ˆ
1

2

µ 9r2
˙

“ 1

2

µp2 9rq d

dt
9r “ µ 9r:r

´ d

dt
Ueff prq “ ´ d

dr
Ueff prqdr

dt
“ 9r

ˆ
´ d

dr
Ueff prq

˙

d

dt

ˆ
1

2

µ 9r2
˙

“ ´ d

dt
Ueff prq

d

dt

ˆ
1

2

µ 9r2 ` Ueff prq
˙

“ 0

1

2

µ 9r2 ` Ueff prq “ const



280Conservation of energy

1

2

µ 9r2 ` Uprq ` Ucf prq “ const

1

2

µ 9r2 ` Uprq ` l2

2µr2
“ const

1

2

µ 9r2 ` Uprq ` 1

2

µr2 9�2 “ const = E

So everything we know about the 1d 
problem applies here, which simplifies 

things quite a bit!



281Let’s work out

Examples 8.1-8.2 together
Problem 8.7 in small groups or by 
yourself



282Equations of the orbit

µ:r “ ´ d

dr
rUprq ` Ucf prqs “ ´ d

dr
Ueff prq

Ueff prq “ Uprq ` Ucf prq “ Uprq ` l2

2µr2

This gives us the equation r(t), but we 
might want to know r(Φ) instead...

Time to play some tricks



283Rewriting the radial equation

1/r2 = u2

Careful!
µ ‰ u

µ:r “ F prq ` l2

µr3

l “ µr2 9�

u “ 1

r
, r “ 1

u
d

dt
“ d�

dt

d

d�
“ 9� d

d�
“ l

µr2
d

d�
“ lu2

µ

d

d�



284Rewriting the radial equation

Careful!
µ ‰ u

d

dt
“ lu2

µ

d

d�

9r “ d

dt
r “ lu2

µ

d

d�
r “ lu2

µ

d

d�

ˆ
1

u

˙
“ lu2

µ

´1

u2

du

d�

9r “ ´l

µ

du

d�

:r “ d

dt
9r “ lu2

µ

d

d�

ˆ´l

µ

du

d�

˙

:r “ ´ l2u2

µ2

d2u

d�2



285Plugging back in

Careful!
µ ‰ u

µ:r “ F prq ` l2

µr3

µ:r “ F p1{uq ` u3l2

µ

:r “ ´ l2u2

µ2

d2u

d�2

´µ

ˆ
l2u2

µ2

d2u

d�2

˙
“ F p1{uq ` u3l2

µ

d2u

d�2
“ ´µ

l2u2
F p1{uq ´ u

More 
compact:

u2p�q “ ´ µ

l2u2
F ´ up�q



286The two-body gravitational problem

Fprq “ ´Gm1m2

r2
r̂

u2p�q “ ´ µ

l2u2
F ´ up�q

F “ ´ �

r2
“ ´�u2



287The two-body gravitational problem

Freedom to define 
coordinates so that 
!=0

✏ “ Al2

µ�

u2p�q “ ´ µ

l2u2
F ´ up�q

u2 “ ´ µ

l2u2
p´�u2q ´ u

u2 “ µ�

l2
´ u

w “ u ´ µ�

l2

w1 “ u1, w2 “ u2

w2 “ µ�

l2
´ u “ µ�

l2
´ pw ` µ�

l2
q

w2 “ µ�

l2
´ w ´ µ�

l2

w2 “ ´w Ñ wp�q “ A cosp� ´ �q
up�q “ A cosp� ´ �q ` µ�

l2

up�q “ µ�

l2
p1 ` ✏ cos�q



288Solution to the two-body gravitational problem

up�q “ µ�

l2
p1 ` ✏ cos�q “ 1

r

rp�q “ c

1 ` ✏ cos�

c “ l2

µ�
“ l2

Gm1m2µ

✏ † 1 Ñ rp�q bounded

✏ ° 1 Ñ rp�q can grow to 8



289Studying the bounded orbits

perihelion/perigee ("=0)

aphelion/apogee ("=#)

rp�q “ c

1 ` ✏ cos�

r
min

“ c

1 ` ✏

r
max

“ c

1 ´ ✏



290Rewriting the solution (Problem 8.16)
r “

a
x

2 ` y

2
, cos� “ x{r

r “ c

1 ` ✏ cos�

rp1 ` ✏x{rq “ c

r ` ✏x “ c

r “ c ´ ✏x

r

2 “ pc ´ ✏xq2 “ x

2 ` y

2

c

2 ` ✏

2
x

2 ´ 2c✏x “ x

2 ` y

2

p1 ´ ✏

2qx2 ` 2c✏x ` y

2 “ c

2

x

2 ` 2c✏

1 ´ ✏

2
x ` y

2

1 ´ ✏

2
“ c

2{p1 ´ ✏

2q

px ` dq2 ` y

2

1 ´ ✏

2
“ c

2{p1 ´ ✏

2q ` d

2 d “ c✏

1 ´ ✏2

Where 
completing the 
square means



291Rewriting the solution (Problem 8.16)

px ` c✏

1 ´ ✏

2
q2 ` y

2

1 ´ ✏

2
“ c

2

1 ´ ✏

2
` c

2
✏

2

p1 ´ ✏

2q2

px ` c✏

1 ´ ✏

2
q2 ` y

2

1 ´ ✏

2
“ c

2 ´ c

2
✏

2 ` c

2
✏

2

p1 ´ ✏

2q2

px ` c✏

1 ´ ✏

2
q2 ` y

2

1 ´ ✏

2
“ c

2

p1 ´ ✏

2q2
px ` dq2

a

2
` y

2

b

2
“ 1

With constants:
a “ c

1 ´ ✏2
, b “ c?

1 ´ ✏2
, d “ c✏

1 ´ ✏2

a “ c

1 ´ ✏2
, b “ c?

1 ´ ✏2
, d “ a✏



292Looking at the solution

px ` dq2
a

2
` y

2

b

2
“ 1

a “ c

1 ´ ✏

2
, b “ c?

1 ´ ✏

2
, d “ a✏

This is an ellipse, with the center of the ellipse 
offset by d along the x axis from the origin.

Distance 
from origin 
to sun

d “ c✏

1 ´ ✏2



293A reminder about ellipses

px ` dq2
a

2
` y

2

b

2
“ 1

a “ c

1 ´ ✏

2
, b “ c?

1 ´ ✏

2
, d “ a✏

Definition of 
eccentricity e of an ellipse

So ε is the eccentricity

Quick check:
What do we get
for a circle?

e “
?
a2 ´ b2

a

e “

b
c2

p1´✏2q2 ´ c2

1´✏2

c
1´✏2

e2 “
c2

p1´✏2q2 ´ c2

1´✏2

c2

p1´✏q2

e2 “
c2

p1´✏2q2 ´ c2´✏2c2

p1´✏2q2
c2

p1´✏2q2

e2 “ c2 ´ c2 ` ✏2c2

c2

e2 “ ✏2

e “ ✏



294A reminder about ellipses

As expected, 
ε=0→d=0

d “ c✏

1 ´ ✏2
“ a✏ “ ellipse focus

Kepler’s First Law



295A brief step back to Section 3.4 (Kepler’s 2nd law)

O

In a small time Δt, the area swept out is the 
area of the triangle OAB

r

x=rcosθ

y=rsinθ
θ

As a planet moves 
around the sun, what 
can we say about the 
area swept out by the 
orbit?



296A brief step back to Section 3.4 (Kepler’s 2nd law)

As a planet moves 
around the sun, what 
can we say about the 
area swept out by the 
orbit?

O

In a small time Δt, the area swept out is the 
area of the triangle OAB... but Δt is small, so 

Δθ is small. cos(Δθ)~1, sin(Δθ)~Δθ

r

x=r

y=rΔθ
θ

dA=0.5xy = 0.5r2Δθ



297A brief step back to Section 3.4 (Kepler’s 2nd law)

As a planet moves 
around the sun, what 
can we say about the 
area swept out by the 
orbit?

O

Constant for 
this system!

A “ 1

2

ª ✓1

✓0

r2d✓

Recall l “ mr2 9✓ “ mr2
d✓

dt

d✓ “ ldt

mr2

A “ 1

2

ª tp✓1q

tp✓0q
r2

ldt

mr2

A “ l

2m

ª tp✓1q

tp✓0q
dt

dA

dt
“ l

2m
“ mr2 9✓

2m
“ r2!

2



298On to Kepler’s third law

Recall:
a “ c

1 ´ ✏2
, b “ c?

1 ´ ✏2

pb{aq “
a
1 ´ ✏2

b2 “ a2p1 ´ ✏2q

c “ l2

µ�
“ µ2r4!2

µ�
“ µr4!2

�

!2 “ c�

µr4

dA

dt
“ r2!

2
A “ ⇡ab

⌧ “ A

dA{dt “ 2⇡ab

r2!

⌧2 “ 4⇡2a2b2

r4!2

⌧2 “ 4⇡2a4p1 ´ ✏2q
r4!2

⌧2 “ 4⇡2a4p1 ´ ✏2q
r4pc�q{pµr4q

⌧2 “ 4µ⇡2a3

�



299Continuing with Kepler’s third law

For example, 
for earth and 
sun, where 
ms >> me

Square of period proportional to cube of 
semimajor axis

⌧2 “ 4µ⇡2a3

�

� “ Gmems, µ “ mems

me ` ms

µ

�
“ mems

pme ` msqpGmemsq “ 1

Gpme ` msq
µ

�
„ 1

Gms

⌧2 “ 4⇡2

Gms
a3



300Energy of the orbit

1

2
µ 9r2 ` Ueff prq “ E

9rprminq “ 0 Ñ Ueff prminq “ E

Uprminq ` l2

2µr2min

“ E

´ �

rmin
` l2

2µr2min

“ E

rp�q “ c

1 ` ✏ cos�

r
min

“ c

1 ` ✏

r
max

“ c

1 ´ ✏

c “ l2

µ�



301Energy of the orbit

´ �

rmin
` l2

2µr2min

“ E

rmin “ l2

µ�p1 ` ✏q

´�2µp1 ` ✏q
l2

` µ�2p1 ` ✏q2
2l2

“ E

E “ µ�2
`
p1 ` ✏q2 ´ 2p1 ` ✏q

˘

2l2

E “ µ�2p✏2 ´ 1q
2l2

E > 0 when ε > 1
E < 0 when ε < 1
E = 0 when ε=1



302What is the orbit if ε=0?

r “
a
x

2 ` y

2
, cos� “ x{r

r “ c

1 ` cos�

rp1 ` x{rq “ c

r ` x “ c

r “ c ´ x

r

2 “ pc ´ xq2 “ x

2 ` y

2

c

2 ` x

2 ´ 2xc “ x

2 ` y

2

c

2 ´ 2cx “ y

2

Get a parabola 
when energy = 0



303What is the orbit if ε>1?

r “
a
x

2 ` y

2
, cos� “ x{r

r “ c

1 ` ✏ cos�

r Ñ 8 when ✏ cos�

max

“ ´1

There is a maximum
angle that the satellite can reach!



304Similar math to before for ε>1

Now (1-ε2) < 0

r “
a
x

2 ` y

2
, cos� “ x{r

r “ c

1 ` ✏ cos�

rp1 ` ✏x{rq “ c

r ` ✏x “ c

r “ c ´ ✏x

r

2 “ pc ´ ✏xq2 “ x

2 ` y

2

c

2 ` ✏

2
x

2 ´ 2c✏x “ x

2 ` y

2

p1 ´ ✏

2qx2 ` 2c✏x ` y

2 “ c

2

x

2 ` 2c✏

1 ´ ✏

2
x ` y

2

1 ´ ✏

2
“ c

2{p1 ´ ✏

2q

x

2 ´ 2c✏

✏

2 ´ 1

x ´ y

2

✏

2 ´ 1

“ ´c

2{p✏2 ´ 1q

px ´ dq2 ´ y

2

✏

2 ´ 1

“ ´c

2{p1 ´ ✏

2q ` d

2

Note sign 
swap 
compared to 
before



305Result if ε>1

px ´ �q2
↵

2
´ y

2

�

2
“ 1

Hyperbola:



306Putting it all together



307Let’s work on some problems

8.28 and 8.29 in small groups or 
by yourself



308Launching a satellite (not in Taylor)

Given a satellite 
launch with burnout 
(when the rocket 
shuts down) at a 
certain angle, how 
can we calculate the 
eccentricity and 
apogee/perigee of the 
orbit?



Consider burnout a 
distance rb from the 
center of the
earth with velocity vb

Call the angle between
vb and rb to be $

Angular momentum about center of earth
is a constant = mrbvb sin$ = L. At perigee/apogee, 
mrv = L (since r and v are perpendicular)

309Launching a satellite

The orbit

The earth



310Launching a satellite

Energy at burnout =

m

2

v2b ´ GMem

rb
“ Constant

Energy later =

m

2

v2 ´ GMem

r
“ m

2

v2b ´ GMem

rb

v2 ´ v2b “ 2GMe

ˆ
1

r
´ 1

rb

˙



311Launching a satellite

v2 ´ v2b “ 2GMe

ˆ
1

r
´ 1

rb

˙

rv “ rbvb sin �

v2 “ prb{rq2v2b sin2 �

prb{rq2v2b sin2 � ´ v2b “ 2GMe

ˆ
1

r
´ 1

rb

˙

sin2 � ´
ˆ
r2

r2b

˙
“ 2GMe

v2b

ˆ
r

r2b
´ r2

r3b

˙

sin2 � ´
ˆ
r2

r2b

˙
“ 2GMe

v2brb

ˆ
r

rb
´ r2

r2b

˙

ˆ
r

rb

˙2 ˆ
2GMe

rbv2b
´ 1

˙
´ 2GMe

rbv2b

ˆ
r

rb

˙
` sin2 � “ 0

E conservation

L conservation



312Solving the quadratic equation

Two solutions - smaller for perigee, 
larger for apogee

ˆ
r

rb

˙2 ˆ
2GMe

rbv
2
b

´ 1

˙
´ 2GMe

rbv
2
b

ˆ
r

rb

˙
` sin2 � “ 0

k “ 2GMe

rbv
2
b

, x “ r{rb

x

2pk ´ 1q ´ kx ` sin2 � “ 0

x “
k ˘

b
k

2 ´ 4pk ´ 1q sin2 �
2pk ´ 1q



313Example

A satellite launched from 
earth burns out at a height 
of 300 km at 8,500 m/s and 
a zenith angle = 85 degrees. 
What are the orbit apogee, 
perigee and eccentricity? 

ˆ
r

rb

˙2 ˆ
2GMe

rbv
2
b

´ 1

˙
´ 2GMe

rbv
2
b

ˆ
r

rb

˙
` sin2 � “ 0

k “ 2GMe

rbv
2
b

, x “ r{rb

x

2pk ´ 1q ´ kx ` sin2 � “ 0

x “
k ˘

b
k

2 ´ 4pk ´ 1q sin2 �
2pk ´ 1q

Careful! r is height 
from center of 
earth (need 
6.38e6 meters 
extra)



314Solution

x = 0.979, 1.56

Altitude at perigee = 
0.979(6.38e6 + 300e3) meters
= 160 km above the earth

Altitude at apogee = 
1.56(6.38e6 + 300e3) meters 
=4000 km above the earth



315Solution

Altitude at perigee = 
0.979(6.38e6 + 300e3) = 
6540 km above earth center

Altitude at apogee = 
1.56(6.38e6 + 300e3) =
10420 km above earth center

rmin/rmax = (1-ε)/(1+ε) = 0.63 
so eccentricity = 0.23

rp�q “ c

1 ` ✏ cos�

r
min

“ c

1 ` ✏

r
max

“ c

1 ´ ✏



316Change of orbit (back to Taylor)

Know that r of first orbit at given Φ = r of 
second orbit (after a thrust push)

Hi, MOM!



317A special case of thrust

Consider thrust at perigee/apogee in tangential 
direction (so direction of velocity doesn’t 

change)



318A special case of thrust

rp�q “ c

1 ` ✏ cos�

r1p0q “ c1{p1 ` ✏1q
r2p0q “ c2{p1 ` ✏2q

r1p0q “ r2p0q Ñ c1
1 ` ✏1

“ c2
1 ` ✏2

v2 “ �v1

l “ µrv constant Ñ l2 “ �v1

Thrust factor
c “ l2

µ�
Ñ c2 “ �2c1



319A special case of thrust

c1
1 ` ✏1

“ c2
1 ` ✏2

c2 “ �2c1

c1
1 ` ✏1

“ c1�2

1 ` ✏2
1 ` ✏2 “ �2p1 ` ✏1q
✏2 “ �2✏1 ` p�2 ´ 1q

If λ positive, what 
does that mean for 
eccentricity? Similarly, 
what happens if it is 
negative?



320Let’s go over

First part of example 
8.6 together



321Homework, as usual due in 1 week

8.3,8.12,8.15,8.17,8.18,8.33


