Armed with Newton and Lagrangian mechanics...

Let’s tackle a new problem (chapter 8 of Taylor)




Two-body central force motion

Center of Mass | a=N

miry -
R =

T -
M:m1+m2

Recall this from earlier in
the course, now only with
two particles



Two-body central force motion

Recall definition: If
internal forces are
along vector
connecting particles,
we call them central
forces



Two-body central force motion

r=1r1 —7I9

U(ri,r3) = U(|r; — ro|)t for conservative central force

U=U(r)



What's sorts of problems can we think of?

Hydrogen Atom

electron (= proton

®
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What's sorts of problems can we think of?




What's sorts of problems can we think of?




Writing down the Lagrangian

O
I 5 1
L = 5T + 5 M2l — Ul(r)

Note that we are starting out with 6 degrees of
freedom! Let's hope that we can reduce this



Writing down the Lagrangian

O
I 5 1
L = 5T + 5 M2l — Ul(r)

Good news when using the Lagrangian
formalism is that we can pick 6 generalized
coordinates. Which ones”?



Writing down the Lagrangian

miry + MmMor9

R —

M1 + Mo
M = mq + mo

Center of mass
of system gives
us 3 potentially
useful
coordinates



Writing down the Lagrangian

Recall that CoM moves as:

P = MR F<* =0 - P =0
P:MR:ZF““” P = 0 — R = constant

Free to choose inertial frame in which
center of mass is at rest



Two-body central force motion

mM1r1 + Moly
M
M:ml—l—mg

R =

r =171 —TI9

s =r-—+ro

Similarly,

rng—%r



Does this tell us what we might guess already?

For very large mass m1 >> m2, M=(m1+mz)~mj
and ri~R, r2 ~R-r



Writing down the kinetic energy

O

1

1 : 2 - 2
7= 5 (oo [+ 226)" o [ - 224
1 . 2 . [ . 2 .
T=§<m1 [R2+%I‘2+2R-I‘%]—I—m2 R2+%1"2—2R-1’~%D
1 . 2 2 _
I'=3 ((m1 +ma)R* + m1m2]\;2m2m1 i’ + 2R - i«mlmQMm?ml)
1 : mi + ms)(mims) .
T=§(<m1+m2>R2+( : A})z( : ))

(e 72



Simplifying the kinematic energy

Reduced mass O
(always smaller than

m1 and my) \

_1 -2|m1m2,2
M_mlmg_ 119 T_i(MR | M I')
M m+ 1 . 1
mi + 1m2 T:§MR2—|—§,MI°'2

For very large mass m1 >> mg2, y=(m1mz)/m1 ~m2
For equal masses y=(m*m)/(2m) ~m/2



What's the meaning/signifiance?

-1 (MR2 | mlmQr‘-Q)
2 M O
1. .. 1
T = —~MR* + - pi?
2 oK

Kinetic energy is the same as energy of two
particles (not real!):
1) Particle with mass M = m4+m2 moving with
speed of the center of mass
2) Particle with mass g moving with speed of
relative position



Let's write down the Lagrangian

T 9
Lécm + »Crel
Only involves

Only involves CoM velocity relative coordinate

and motion



With a Lagrangian, we can find the Equations of Motion

oL oUu d oL d . .
— _— —1 = IU‘I'

or  or dtor Pat

. . . oU
MR =0 — R = constant ur = ——— = F(r)

or
/ \ Only relevant
equation/non-trivial

Center of mass moves o volving th
with constant velocity motion Invo Vm?orcg



We can simplify further

CM = OI'_I'l—I‘Q

ro — ——r

M

oU

MR = 0 — R = constant ,LL'I‘:—W_F()

Choose inertial frame with R at rest at the origin

Problem is now (for all m1, m2) only three-
dimensional. But consider the special case with
very large mass m+ >> my, h~mg
and r1 ~ O, and r2 ~ -r. What does it look like?



What about angular momentum?

L—r X pi+1rs X po Total angular
- - momentum of

L= 37 X (i) = 7rr X (maf2) - gystem in CM

—m1m2 r mgf r mli' .
L="p 5 X (mat) X {mar) particle at r
L —

Y. (m1 + mg)(r X 1) with mass

L =r X (ur)



What does conservation of angular momentum tell us?

L =r X (pr)

Is this clear?

L is a constant (because there
are no external forces), which
means it always points Iin
same direction.

So our three-dimensional
problem is now reduced to a
two-dimensional problem
(remember, we started with
six dimensions!)



Let’s finally write down a Lagrangian in detail

1

£=§ur —U(r) or | U
L 5 9 or = pre” = or
L= ou( +r*d) U _—
oL _ . _doL d(u 6) or M
% dt 0p — dt d(w) pre? 2 U
240 ] — dt or
ur<¢ = [ = constant P

/‘ W—umﬁ—ﬁ

Conservation of angular
momentum



Let's simplify further

ur’¢ = [ = constant pr = pr” — or
- [ . oU
= — - —|— FC
¢ ur? H or d

Centrifugal Force




Let's simplify further

. - oU
pit = pre® — ——

CM=0 p =p; — 1
@

,u,rz—ﬁthcf
o [2
Fep = pro s
d [ 12 dU, 1
Fcf__dr (2,u7“2> T dr
l2
LU + Uap ()] = —-Z0eps (1)
r = —— r (r)| = ———Ug.¢¢(r
H dr / dr 1




Putting it together

Radial motion of this fictional particle with
mass U behaves as if it was moving in a
single dimensional effective potential given
by the nominal one + the "fictitious” one



Conservation of energy

d (1 ., d
E(§/ﬂa>_ dt eff()
d (1

dt( ,LL?“ +U€ff( ))ZO

1
§,u7'“2 + Uesr(r) = const



Conservation of energy

1

§,LL7'“2 + U(r) + U.s(r) = const

1 U [ .

— T T) - = COIS

e 212
L. L 50 -
SHT +U(r)+§,u7“ ¢° = const = E

So everything we know about the 1d
problem applies here, which simplifies
things quite a bit!



Let’'s work out

Examples 8.1-8.2 together
Problem 8.7 in small groups or by
yourself



Equations of the orbit

This gives us the equation r(t), but we
might want to know r(®) instead...
Time to play some tricks



Rewriting the radial equation

pr?
lz,urzgi
Careful! 1
p# =TT
d_d¢d _,d 1 d lu? d

dt — dtdé ' dé  wrdé  u do

1/r2 = u?



Rewriting the radial equation

Careful!
. d lu? d
U ——
H dt g do
d lu? d lw? d (1 lu? —1 du
r=—r = r = — | =
dt o do w do \u w u? do
, —[ du
r == — —
o do
d lw? d ([ —1du
r = —r =
dt uwodo \ pu do
12u? d?u




Plugging back in

Careful! p = F(r) + pr®
L4 £ U U3l2
pr = F(1/u) + o
. I*u? d*u
r= =7 dp?
1u? d*u usl?
(g ) = FO
d? —
dqb?; = 125217(1/“) — U
o
More () = — o F — (o)

compact: [212
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The two-body gravitational problem




The two-body gravitational problem

Freedom to define
I YT coordinates so that
w” = —w — w(¢) = Acos(¢p — 9) 5=0

u(¢p) = Acos(¢p —6) + % B A_l2

u(¢) = % (1 + ecoso) T



Solution to the two-body gravitational problem

u(p) = 'l;; (1 +€ecosq) = !
c
r(9) = 1+ €ecoso
[4 [4
f—

Ky B Gmimap

e <1 — r(¢) bounded

e >1— r(¢) can grow to oo



Studying the bounded orbits

C
T p—
(9) 1 + €cos @
C
Fmin = 1+ ¢
C
IF'max =

1 — ¢

perihelion/perigee (¢=0)

aphelion/apogee (¢p=r)



Rewriting the solution (Problem 8.16)

r = \/xQ + y?,cos¢p = x/r
c

T =
1 4+ ecos ¢

r(l+ex/r) =c
r+ex =c

r=C—€x

2

r? = (c —ex)* = z° + y°
2

2—2cex=x2+y2

2

C +e2x
(1 — €z +2cex + y? = ¢

2ce Y
2
- + xr +
1 — €2

(x+d)2+1362 = ?/(1 — €2) + d°

2 : /

Where
completing the
square means

Cce
d —
1 — €2




Rewriting the solution (Problem 8.16)




Looking at the solution

CeE

9 2 d — .
(a +2d) Yo 1 e Distance
a b from origin
C C .
a4 = h = d = ae < to sun

This is an ellipse, with the center of the ellipse
offset by d along the x axis from the origin.

Ellipse



A reminder about ellipses

Definition of | va? %
eccentricity e of an ellipse ||___a
\/(1_052)2 13262
Quick check: €= o
What do we get PR

for a circle? 2 (=e)?  1-¢




A reminder about ellipses

= ae = ellipse focus

aphelion

hMinor axis

o . F c F "
Semi-major axis \(_a
x2 y*
Drawing an ellipse: loop string around thumb tacks at each aZ +b_'~’=1
focus and stretch string tight with a pencil while moving the Ellipse

pencil around the tacks. The Sun is at one focus.

-

1 — €2 /

Kepler’'s First Law

As expected,

perihelion ¢ =()_— =0




A brief step back to Section 3.4 (Kepler’'s 2nd law)

As As a planet moves
/_ around the sun, what
‘ can we say about the
area swept out by the
orbit?

In a small time At, the area swept out is the
area of the triangle OAB

r | |
=rsin®
4/3’

X=rcos0o




A brief step back to Section 3.4 (Kepler’'s 2nd law)

As As a planet moves
/ around the sun, what
‘ can we say about the
area swept out by the
orbit?

In a small time At, the area swept out is the
area of the triangle OAB... but At is small, so
AB is small. cos(AB)~1, sin(AB)~AB

%Fme dA=0.5xy = 0.5r2A0
X:

I




A brief step back to Section 3.4 (Kepler’'s 2nd law)

As a planet moves
around the sun, what
can we say about the
area swept out by the
orbit”?

Constant for

this system!

: do
Recall | = mr?0 = mr? —
dit
[dt
mr
t(01)
. 1J .2 [dt
2 Je(00) mr?
/ t(01)
A= — dit
2m t(eo)
dA L B mr20 B 7°2_w
dt  2m  2m 2



On to Kepler’s third law

dA  rw
a9 l?ecall. )
A = mab a=1_62,b=\/1_€2
A 2mab
T dA/dt  r2w (b/a) = V1 - ¢
2 _ 2 2
72:477%2[)2 b = a*(1 — €*)
r4w? I pPritw? prte?
C = — — —
o, Ar?at(l —¢€%) Yy v
T rdw? o2 =
L An2at(1 — €2) pr
rt(ey)/(pr?)
> 4um?a’
T =

~



Continuing with Kepler’s third law

2 _ 4um?a’

T

y
v = Gmemg, 4 = Mhelbs
Me + Mg

no MMM B 1
v (Mme + mg)(Gmems)  G(me + myg)

v 1

v Gmy For example,

,  Ar? for earth and

TS = a
Gms w, sun, where
Ms >> Me

Square of period proportional to cube of
semimajor axis



Energy of the orbit

C
T —
%M,,;Q FUsps(r) = E () 1+ eccos ¢

7(Tmin) = 0 = Ucpf(Tmin) = E F'min = | & ¢

U(Tmin) + l22 = F . _ c
2ures . max 1 _ ¢

12

_nzm oz = F /2

C —_— -



Energy of the orbit

: ngJrE) : E>0whene>1
7 M(112+€) LB (211;6) _rp E<Owhene<1
E =0 when =1
uy? (T+€)? —2(1+¢))
E —
212
2( 2
py (e — 1)
B =
212




What is the orbit if =07

r=/22 + y2,cos ¢ = x/r
c

r

T 14+ COS @
r(l+4+x/r) =c
= Get a parabola
e when energy = 0
r? = (c—x)* = 2% +y°

¢ + 2% — 2xc = 27 + y°

¢ — 2cx = y°



What is the orbit if €17

r=/22 + y2,cos ¢ = x/r
c

1 + €cos ¢

r — 00 when €cosS @pmar = —1

r

There iIs a maximum
angle that the satellite can reach!



Similar math to before for £>1

r=/22 + y2,cos d = x/r
c

T =
1+ ecoso

r(l+ex/r)=c
r+ex =-c
_ r=cC—€x
Note sign 12 (e— ex)? = 2? 14
swap & + 2% — 2cexr = T2 + y2
Compared to (1 —€*)a? + 2cex + y* = ¢ Now (1 '82) <0

before » .2
2 201 2
\wﬂ;iﬁ_ez—c/“ )
2
2 C > Y _ 2 2
e A c/(e” —1)
_ A\2 _ ?/2 2 2 2
(x — d) =—c*/(1—€)+d




Result if £>1

Hyperbola:

(x —0)% ¥~

2 32 = 1




Putting it all together




Let’'s work on some problems

8.28 and 8.29 in small groups or
by yourself



Launching a satellite (not in Taylor)

Given a satellite
launch with burnout
(when the rocket
shuts down) at a
certain angle, how
can we calculate the
eccentricity and
apogee/perigee of the
orbit?




Launching a satellite

Consider burnout a The orbit
distance r, from the \ '
center of the
earth with velocity vy

Call the angle between
Vb and b tO be 14 The earth

Angular momentum about center of earth
IS a constant = mrpvpb Siny = L. At perigee/apogee,
mrv = L (since r and v are perpendicular)



Launching a satellite

m GM.m
Energy at burnout = 5@? — ¢ = Constant
Ty
m GM.m m GM.m
Energy later =—uv? — = —vg — -
2 T 2 b

1 1
v? —vi = 2G M, (— — —)

T Tp



Launching a satellite

- 11
E conservation v* —v; = 2GM, <_ _ _>
T T'p

TV = TpUp SIN Y

L conservation
v? = (ry/r)%vf sin®

1 1
(ry/7)%vf sin® v — vi = 2G M, (— — _)

T b

Sin2 _ ﬁ —QGMG L_ﬁ
T\ g

in?y (ﬁ) _ 2GM. (L ~ ﬁ)
5 v%rb rh ’rg

r\? [ 2GM, 20GM, [ r o,
o 5~ — 1) — > | — ) +sin®y =0
Ty X Uy, T

=

ﬁ




Solving the quadratic equation

<r>2(2GMe > 2G M., <7~> p
— — — 1] — 5 | — | +smn”y =
Tp xon Ty Uy Tp

2G M,

ryUs

v?(k—1) — kx +sin®y =0

L —

X =T1/Tp

ki\/k2—4(k—1)sin27
2(k —1)

T =

Two solutions - smaller for perigee,
larger for apogee



Example

r\° (2GM, 2GM, [ r 5
— 5 — 1) — > | — | +sin®y =0
Tp rbvb rbvb Tp

_ 2GM,

rbvg

v?(k —1) — kx +sin®y =0

k

LT =T/T}

k‘i‘\/kQ—il(k—l)sianf
€Tr =
2(k—1)

A satellite launched from
earth burns out at a height
of 300 km at 8,500 m/s and

a zenith angle = 85 degrees.

What are the orbit apogee,
perigee and eccentricity?

Careful! r is height
from center of
earth (need
6.38e6 meters
extra)



Solution

X =0.979, 1.56

Altitude at perigee =
0.979(6.38e6 + 300e3) meters
= 160 km above the earth

Altitude at apogee =
1.56(6.38€e6 + 300e3) meters
=4000 km above the earth




Solution

Altitude at perigee =
0.979(6.38e6 + 300e3) =

6540 km above earth center r(p) = €

1 + ecos ¢
Altitude at apogee = oo
1.56(6.38€6 + 300e3) = T 4 e
10420 km above earth center C

Tmax
1 — €

rmin/rmax = (1-¢)/(1+€) = 0.63
so eccentricity = 0.23



Change of orbit (back to Taylor)

Know that r of first orbit at given @ = r of
second orbit (after a thrust push)



A special case of thrust

PERIGEE
@

EARTH °

¢’
-
“ o'
§~ »
~ 'l
~ -
~~~~~
------
------------

Consider thrust at perigee/apogee in tangential
direction (so direction of velocity doesn’t
change)



A special case of thrust

C
r(9) = 1 + €cos g

Tl(O) — Cl/(l + 61)
7”2(0) — 62/(1 + 62)

C1 C9
r1(0) = r2(0) = 14+e; 1+ e

Thrust factor

Vo = )\Ul

[ = prv constant — [y = Avy



A special case of thrust

& R &
1+ €1 B 1+ €92
Co — )\201
C1 c1\?

1—|-€1 B 1—|—€2
1—|-€2=)\2(1—|—61)

€2 = Nep + (AN —1)

If A positive, what
does that mean for
eccentricity? Similarly,
what happens if it is
negative?



Let’'s go over

First part of example
8.6 together



Homework, as usual due in 1 week

3.3,8.12,8.15,8.17,8.18,8.33



