
Armed with Newton and Lagrangian mechanics...

Let's tackle a new problem (chapter 8 of Taylor)

Center of Mass

Origin

$$
\begin{gathered}
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \\
M=m_{1}+m_{2}
\end{gathered}
$$

Recall this from earlier in the course, now only with two particles

$$
\begin{gathered}
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \\
M=m_{1}+m_{2}
\end{gathered}
$$

Recall definition: If internal forces are along vector connecting particles, we call them central forces

$U\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=U\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right) \hat{\mathbf{r}}$ for conservative central force

$$
U=U(r)
$$

Hydrogen Atom

Writing down the Lagrangian

$$
\mathcal{L}=\frac{1}{2} m_{1} \dot{\mathbf{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\mathbf{r}}_{2}^{2}-U(r)
$$

Note that we are starting out with 6 degrees of freedom! Let's hope that we can reduce this

Writing down the Lagrangian

$$
\mathcal{L}=\frac{1}{2} m_{1} \dot{\mathbf{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\mathbf{r}}_{2}^{2}-U(r)
$$

Good news when using the Lagrangian formalism is that we can pick 6 generalized coordinates. Which ones?

Writing down the Lagrangian

$$
\begin{aligned}
& =\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \quad \begin{array}{l}
\text { Center of mass } \\
\text { of system gives } \\
\text { us } 3 \text { potentially } \\
\text { useful } \\
\text { coordinates }
\end{array} \\
& M=m_{1}+m_{2}
\end{aligned}
$$

Recall that CoM moves as:

$$
\mathbf{P}=M \dot{\mathbf{R}}
$$

$$
\mathbf{F}^{\mathrm{ext}}=\mathbf{0} \rightarrow \dot{\mathbf{P}}=\mathbf{0}
$$

$\dot{\mathbf{P}}=M \ddot{\mathbf{R}}=\sum \mathbf{F}^{e x t} \quad \dot{\mathbf{P}}=0 \rightarrow \dot{R}=$ constant
Free to choose inertial frame in which center of mass is at rest

$$
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{M}
$$

$$
M=m_{1}+m_{2}
$$

$$
\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\mathbf{r}+\mathbf{r}_{2}
$$

$$
\mathbf{r}_{2}=\frac{M \mathbf{R}-m_{1} \mathbf{r}_{1}}{m_{2}}
$$

$$
\mathbf{r}_{1}=\mathbf{r}+\frac{M \mathbf{R}-m_{1} \mathbf{r}_{1}}{m_{2}}
$$

$$
\mathbf{r}_{1}\left(1+\frac{m_{1}}{m_{2}}\right)=\mathbf{r}+\frac{M \mathbf{R}}{m_{2}}
$$

$$
\mathbf{r}_{1} \frac{m_{1}+m_{2}}{m_{2}}=\mathbf{r}+\frac{M \mathbf{R}}{m_{2}}
$$

$$
\mathbf{r}_{1} \frac{M}{m_{2}}=\mathbf{r}+\frac{M \mathbf{R}}{m_{2}}
$$

$$
\mathbf{r}_{1}=\frac{m_{2}}{M} \mathbf{r}+\mathbf{R}
$$

For very large mass $m_{1} \gg m_{2}, M=\left(m_{1}+m_{2}\right) \sim m_{1}$ and $\mathbf{r}_{1} \sim \mathbf{R}, \mathbf{r}_{2} \sim \mathbf{R - r}$

$$
\begin{aligned}
& \mathbf{r}_{1}=\mathbf{R}+\frac{m_{2}}{M} \mathbf{r} \\
& \mathbf{r}_{2}=\mathbf{R}-\frac{m_{1}}{M} \mathbf{r}
\end{aligned}
$$

$$
T=\frac{1}{2}\left(m_{1} \dot{\mathbf{r}}_{1}^{2}+m_{2} \dot{\mathbf{r}}_{2}^{2}\right)
$$

$$
\begin{gathered}
T=\frac{1}{2}\left(m_{1}\left[\dot{\mathbf{R}}+\frac{m_{2}}{M} \dot{\mathbf{r}}\right]^{2}+m_{2}\left[\dot{\mathbf{R}}-\frac{m_{1}}{M} \dot{\mathbf{r}}\right]^{2}\right) \\
T=\frac{1}{2}\left(m_{1}\left[\dot{\mathbf{R}}^{2}+\frac{m_{2}^{2}}{M^{2}} \dot{\mathbf{r}}^{2}+2 \dot{\mathbf{R}} \cdot \dot{\mathbf{r}} \frac{m_{2}}{M}\right]+m_{2}\left[\dot{\mathbf{R}}^{2}+\frac{m_{1}^{2}}{M^{2}} \dot{\mathbf{r}}^{2}-2 \dot{\mathbf{R}} \cdot \dot{\mathbf{r}} \frac{m_{1}}{M}\right]\right) \\
T=\frac{1}{2}\left(\left(m_{1}+m_{2}\right) \dot{\mathbf{R}}^{2}+\frac{m_{1} m_{2}^{2}+m_{2} m_{1}^{2}}{M^{2}} \dot{\mathbf{r}}^{2}+2 \dot{\mathbf{R}} \cdot \dot{\mathbf{r}} \frac{m_{1} m_{2}-m_{2} m_{1}}{M}\right) \\
T=\frac{1}{2}\left(\left(m_{1}+m_{2}\right) \dot{\mathbf{R}}^{2}+\frac{\left(m_{1}+m_{2}\right)\left(m_{1} m_{2}\right)}{M^{2}} \dot{\mathbf{r}}^{2}\right) \\
T=\frac{1}{2}\left(M \dot{\mathbf{R}}^{2}+\frac{m_{1} m_{2}}{M} \dot{\mathbf{r}}^{2}\right)
\end{gathered}
$$

Reduced mass (always smaller than m_{1} and m_{2})

$$
\mu=\frac{m_{1} m_{2}}{M}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
\begin{gathered}
T=\frac{1}{2}\left(M \dot{\mathbf{R}}^{2}+\frac{m_{1} m_{2}}{M} \dot{\mathbf{r}}^{2}\right) \\
T=\frac{1}{2} M \dot{\mathbf{R}}^{2}+\frac{1}{2} \mu \dot{\mathbf{r}}^{2}
\end{gathered}
$$

For very large mass $m_{1} \gg m_{2}, \mu=\left(m_{1} m_{2}\right) / m_{1} \sim m_{2}$ For equal masses $\mu=\left(m^{*} m\right) /(2 m) \sim m / 2$

Kinetic energy is the same as energy of two particles (not real!):

1) Particle with mass $M=m_{1}+m_{2}$ moving with speed of the center of mass
2) Particle with mass μ moving with speed of relative position

Let's write down the Lagrangian

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} M \dot{\mathbf{R}}^{2}+\left(\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-U(r)\right) \\
\frac{\partial \mathcal{L}}{\partial \mathbf{R}}=0=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{R}}}=M \frac{d}{d t} \dot{\mathbf{R}}=\ddot{\mathbf{R}} \\
\frac{\partial \mathcal{L}}{\partial \mathbf{r}}=-\frac{\partial U}{\partial r}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}}=\mu \frac{d}{d t} \dot{\mathbf{r}}=\mu \ddot{\mathbf{r}}
\end{gathered}
$$

$M \ddot{\mathbf{R}}=0 \rightarrow \dot{\mathbf{R}}=$ constant

Center of mass moves with constant velocity

$$
\mu \ddot{\mathbf{r}}=-\frac{\partial U}{\partial r}=\mathbf{F}(\mathbf{r})
$$

Only relevant equation/non-trivial motion involving the force

We can simplify further

$$
\begin{aligned}
\mathbf{r}_{1} & =\frac{m_{2}}{M} \mathbf{r} \\
\mathbf{r}_{2} & =-\frac{m_{1}}{M} \mathbf{r}
\end{aligned}
$$

$M \ddot{\mathbf{R}}=0 \rightarrow \dot{\mathbf{R}}=\mathrm{constant} \quad \mu \ddot{\mathbf{r}}=-\frac{\partial U}{\partial r}=\mathbf{F}(\mathbf{r})$
Choose inertial frame with \mathbf{R} at rest at the origin
Problem is now (for all $\mathrm{m}_{1}, \mathrm{~m}_{2}$) only threedimensional. But consider the special case with very large mass $m_{1} \gg m_{2}, \mu \sim m_{2}$
and $\mathbf{r}_{1} \sim \mathrm{O}$, and $\mathrm{r}_{2} \sim-\mathbf{r}$. What does it look like?

$$
\mathbf{L}=\mathbf{r}_{1} X \mathbf{p}_{1}+\mathbf{r}_{2} X \mathbf{p}_{2}
$$

Total angular

$$
\mathbf{L}=\frac{m_{2}}{M} \mathbf{r} \times\left(m_{1} \dot{\mathbf{r}}_{1}\right)-\frac{m_{1}}{M} \mathbf{r} \times\left(m_{2} \dot{\mathbf{r}}_{2}\right)
$$ momentum of system in CM

$$
\mathbf{L}=\frac{m_{2}}{M} \mathbf{r} X\left(m_{1} \frac{m_{2}}{M} \dot{\mathbf{r}}\right)-\frac{m_{1}}{M} \mathbf{r} \times\left(m_{2} \frac{-m_{1}}{M} \dot{\mathbf{r}}\right)
$$ frame is just

$$
\mathbf{L}=\frac{m_{1} m_{2}}{M^{2}}\left(\mathbf{r} \times\left(m_{2} \dot{\mathbf{r}}\right)+\mathbf{r} \times\left(m_{1} \dot{\mathbf{r}}\right)\right)
$$ that of single particle at r

$$
\mathbf{L}=\frac{\mu}{m_{1}+m_{2}}\left(m_{1}+m_{2}\right)(\mathbf{r} \times \dot{\mathbf{r}})
$$ with mass μ

$$
\mathbf{L}=\mathbf{r} X(\mu \dot{\mathbf{r}})
$$

What does conservation of angular momentum tell us?

L is a constant (because there are no external forces), which means it always points in same direction.
So our three-dimensional problem is now reduced to a two-dimensional problem (remember, we started with six dimensions!)

Let's finally write down a Lagrangian in detail

$$
\begin{array}{cc}
\mathcal{L}=\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-U(r) & \frac{\partial \mathcal{L}}{\partial r}=\mu r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \\
\mathcal{L}=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r) & \frac{\partial \mathcal{L}}{\partial \dot{r}}=\mu \dot{r} \\
\frac{\partial \mathcal{L}}{\partial \phi}=0=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}=\frac{d}{d t}\left(\mu r^{2} \dot{\phi}\right) & \frac{d}{d t}(\mu \dot{r})=\mu r \dot{\mathbf{r}}^{2}-\frac{\partial U}{\partial r} \\
\mu r^{2} \dot{\phi}=l=\mathrm{constant} & \mu \ddot{r}=\mu r \dot{\phi}^{2}-\frac{\partial U}{\partial r}
\end{array}
$$

Conservation of angular momentum

Let's simplify further

$\mu r^{2} \dot{\phi}=l=$ constant

$$
\dot{\phi}=\frac{l}{\mu r^{2}}
$$

$$
\begin{gathered}
\mu \ddot{r}=\mu r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \\
\mu \ddot{r}=-\frac{\partial U}{\partial r}+F_{c f} \\
F_{c f}=\mu r \dot{\phi}^{2}=\frac{l^{2}}{\mu r^{3}} \\
F_{c f}=-\frac{d}{d r}\left(\frac{l^{2}}{2 \mu r^{2}}\right)=-\frac{d U_{c f}}{d r} \\
U_{c f}(r)=\frac{l^{2}}{2 \mu r^{2}}
\end{gathered}
$$

Centrifugal Force

$$
\begin{gathered}
\mu \ddot{r}=\mu r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \\
\mu \ddot{r}=-\frac{\partial U}{\partial r}+F_{c f} \\
F_{c f}=\mu r \dot{\phi}^{2}=\frac{l^{2}}{\mu r^{3}} \\
F_{c f}=-\frac{d}{d r}\left(\frac{l^{2}}{2 \mu r^{2}}\right)=-\frac{d U_{c f}}{d r} \\
U_{c f}(r)=\frac{l^{2}}{2 \mu r^{2}} \\
\mu \ddot{r}=-\frac{d}{d r}\left[U(r)+U_{c f}(r)\right]=-\frac{\mathbf{r}_{2}}{d r} U_{e f f}(r) \\
U_{e f f}(r)=U(r)+U_{c f}(r)=U(r)+\frac{l^{2}}{2 \mu r^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\mu \ddot{r}=-\frac{d}{d r}\left[U(r)+U_{c f}(r)\right]=-\frac{d}{d r} U_{e f f}(r) \\
U_{e f f}(r)=U(r)+U_{c f}(r)=U(r)+\frac{l^{2}}{2 \mu r^{2}}
\end{gathered}
$$

Radial motion of this fictional particle with mass μ behaves as if it was moving in a single dimensional effective potential given by the nominal one + the "fictitious" one

$$
\begin{gathered}
\mu \ddot{r}=-\frac{d}{d r} U_{e f f}(r) \\
\dot{r}(\mu \ddot{r})=\dot{r}\left(-\frac{d}{d r} U_{e f f}(r)\right) \\
\frac{d}{d t}\left(\frac{1}{2} \mu \dot{r}^{2}\right)=\frac{1}{2} \mu(2 \dot{r}) \frac{d}{d t} \dot{r}=\mu \dot{r} \ddot{r} \\
-\frac{d}{d t} U_{e f f}(r)=-\frac{d}{d r} U_{e f f}(r) \frac{d r}{d t}=\dot{r}\left(-\frac{d}{d r} U_{e f f}(r)\right) \\
\frac{d}{d t}\left(\frac{1}{2} \mu \dot{r}^{2}\right)=-\frac{d}{d t} U_{e f f}(r) \\
\frac{d}{d t}\left(\frac{1}{2} \mu \dot{r}^{2}+U_{e f f}(r)\right)=0 \\
\frac{1}{2} \mu \dot{r}^{2}+U_{e f f}(r)=\mathrm{const}
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{2} \mu \dot{r}^{2}+U(r)+U_{c f}(r)=\mathrm{const} \\
\frac{1}{2} \mu \dot{r}^{2}+U(r)+\frac{l^{2}}{2 \mu r^{2}}=\mathrm{const} \\
\frac{1}{2} \mu \dot{r}^{2}+U(r)+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}=\mathrm{const}=\mathrm{E}
\end{gathered}
$$

So everything we know about the 1d problem applies here, which simplifies things quite a bit!

Examples 8.1-8.2 together Problem 8.7 in small groups or by yourself

Equations of the orbit

$$
\begin{gathered}
\mu \ddot{r}=-\frac{d}{d r}\left[U(r)+U_{c f}(r)\right]=-\frac{d}{d r} U_{e f f}(r) \\
U_{e f f}(r)=U(r)+U_{c f}(r)=U(r)+\frac{l^{2}}{2 \mu r^{2}}
\end{gathered}
$$

This gives us the equation $r(t)$, but we might want to know $r(\Phi)$ instead... Time to play some tricks

$$
\begin{gathered}
\mu \ddot{r}=F(r)+\frac{l^{2}}{\mu r^{3}} \\
l=\mu r^{2} \dot{\phi} \\
u=\frac{1}{r}, r=\frac{1}{u} \\
\frac{d}{d t}=\frac{d \phi}{d t} \frac{d}{d \phi}=\dot{\phi} \frac{d}{d \phi}=\frac{l}{\mu r^{2}} \frac{d}{d \phi}=\frac{l u^{2}}{\mu} \frac{d}{d \phi} \\
1 / \mathrm{r}^{2}=\mathrm{u}^{2}
\end{gathered}
$$

Careful!

$$
\mu \neq u
$$

Careful!

$$
\begin{gathered}
\frac{d}{d t}=\frac{l u^{2}}{\mu} \frac{d}{d \phi} \\
\dot{r}=\frac{d}{d t} r=\frac{l u^{2}}{\mu} \frac{d}{d \phi} r=\frac{l u^{2}}{\mu} \frac{d}{d \phi}\left(\frac{1}{u}\right)=\frac{l u^{2}}{\mu} \frac{-1}{u^{2}} \frac{d u}{d \phi} \\
\dot{r}=\frac{-l}{\mu} \frac{d u}{d \phi} \\
\ddot{r}=\frac{d}{d t} \dot{r}=\frac{l u^{2}}{\mu} \frac{d}{d \phi}\left(\frac{-l}{\mu} \frac{d u}{d \phi}\right) \\
\ddot{r}=-\frac{l^{2} u^{2}}{\mu^{2}} \frac{d^{2} u}{d \phi^{2}}
\end{gathered}
$$

Careful!!

$$
\begin{gathered}
\mu \ddot{r}=F(r)+\frac{l^{2}}{\mu r^{3}} \\
\mu \ddot{r}=F(1 / u)+\frac{u^{3} l^{2}}{\mu} \\
\ddot{r}=-\frac{l^{2} u^{2}}{\mu^{2}} \frac{d^{2} u}{d \phi^{2}} \\
-\mu\left(\frac{l^{2} u^{2}}{\mu^{2}} \frac{d^{2} u}{d \phi^{2}}\right)=F(1 / u)+\frac{u^{3} l^{2}}{\mu} \\
\frac{d^{2} u}{d \phi^{2}}=\frac{-\mu}{l^{2} u^{2}} F(1 / u)-u
\end{gathered}
$$

More
compact:

$$
u^{\prime \prime}(\phi)=-\frac{\mu}{l^{2} u^{2}} F-u(\phi)
$$

The two-body gravitational problem

$$
u^{\prime \prime}(\phi)=-\frac{\mu}{l^{2} u^{2}} F-u(\phi)
$$

$$
\begin{gathered}
u^{\prime \prime}(\phi)=-\frac{\mu}{l^{2} u^{2}} F-u(\phi) \\
u^{\prime \prime}=-\frac{\mu}{l^{2} u^{2}}\left(-\gamma u^{2}\right)-u \\
u^{\prime \prime}=\frac{\mu \gamma}{l^{2}}-u \\
w=u-\frac{\mu \gamma}{l^{2}} \\
w^{\prime}=u^{\prime}, w^{\prime \prime}=u^{\prime \prime}
\end{gathered}
$$

$$
\begin{gathered}
w^{\prime \prime}=\frac{\mu \gamma}{l^{2}}-u=\frac{\mu \gamma}{l^{2}}-\left(w+\frac{\mu \gamma}{l^{2}}\right) \\
w^{\prime \prime}=\frac{\mu \gamma}{l^{2}}-w-\frac{\mu \gamma}{l^{2}} \\
w^{\prime \prime}=-w \rightarrow w(\phi)=A \cos (\phi-\delta) \\
u(\phi)=A \cos (\phi-\delta)+\frac{\mu \gamma}{l^{2}} \\
u(\phi)=\frac{\mu \gamma}{l^{2}}(1+\epsilon \cos \phi)
\end{gathered}
$$

Freedom to define
coordinates so that

$$
\epsilon=\frac{A l^{2}}{\mu \gamma}
$$

Solution to the two-body gravitational problem

$$
\begin{gathered}
u(\phi)=\frac{\mu \gamma}{l^{2}}(1+\epsilon \cos \phi)=\frac{1}{r} \\
r(\phi)=\frac{c}{1+\epsilon \cos \phi} \\
c=\frac{l^{2}}{\mu \gamma}=\frac{l^{2}}{G m_{1} m_{2} \mu} \\
\epsilon<1 \rightarrow r(\phi) \text { bounded } \\
\epsilon>1 \rightarrow r(\phi) \text { can grow to } \infty
\end{gathered}
$$

$$
\begin{aligned}
& r(\phi)= c \\
& 1+\epsilon \cos \phi \\
& r_{\min }=\frac{c}{1+\epsilon} \\
& r_{\max }=\frac{c}{1-\epsilon}
\end{aligned}
$$

$$
r_{\min }=\frac{c}{1+c} \quad \text { perihelion/perigee }(\phi=0)
$$

aphelion/apogee ($\phi=\pi$)

Rewriting the solution (Problem 8.16)

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \cos \phi=x / r \\
r=\frac{c}{1+\epsilon \cos \phi} \\
r(1+\epsilon x / r)=c \\
r+\epsilon x=c \\
r=c-\epsilon x
\end{gathered}
$$

$$
r^{2}=(c-\epsilon x)^{2}=x^{2}+y^{2}
$$

$$
c^{2}+\epsilon^{2} x^{2}-2 c \epsilon x=x^{2}+y^{2}
$$

$$
\left(1-\epsilon^{2}\right) x^{2}+2 c \epsilon x+y^{2}=c^{2}
$$

$x^{2}+\frac{2 c \epsilon}{1-\epsilon^{2}} x+\frac{y^{2}}{1-\epsilon^{2}}=c^{2} /\left(1-\epsilon^{2}\right)$
Where completing the square means
$(x+d)^{2}+\frac{y^{2}}{1-\epsilon^{2}}=c^{2} /\left(1-\epsilon^{2}\right)+d^{2}$

$$
d=\frac{c \epsilon}{1-\epsilon^{2}}
$$

$$
\begin{gathered}
\left(x+\frac{c \epsilon}{1-\epsilon^{2}}\right)^{2}+\frac{y^{2}}{1-\epsilon^{2}}=\frac{c^{2}}{1-\epsilon^{2}}+\frac{c^{2} \epsilon^{2}}{\left(1-\epsilon^{2}\right)^{2}} \\
\left(x+\frac{c \epsilon}{1-\epsilon^{2}}\right)^{2}+\frac{y^{2}}{1-\epsilon^{2}}=\frac{c^{2}-c^{2} \epsilon^{2}+c^{2} \epsilon^{2}}{\left(1-\epsilon^{2}\right)^{2}} \\
\left(x+\frac{c \epsilon}{1-\epsilon^{2}}\right)^{2}+\frac{y^{2}}{1-\epsilon^{2}}=\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}} \\
\frac{(x+d)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{gathered}
$$

With constants:

$$
\begin{gathered}
a=\frac{c}{1-\epsilon^{2}}, b=\frac{c}{\sqrt{1-\epsilon^{2}}}, d=\frac{c \epsilon}{1-\epsilon^{2}} \\
a=\frac{c}{1-\epsilon^{2}}, b=\frac{c}{\sqrt{1-\epsilon^{2}}}, d=a \epsilon
\end{gathered}
$$

Looking at the solution

$$
\begin{gathered}
\frac{(x+d)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad d=\frac{c \epsilon}{1-\epsilon^{2}} \text { Distance } \\
a=\frac{c}{1-\epsilon^{2}}, b=\frac{c}{\sqrt{1-\epsilon^{2}}}, d=a \epsilon \longleftarrow \text { to sun origin }
\end{gathered}
$$

This is an ellipse, with the center of the ellipse offset by d along the x axis from the origin.

Ellipse
$f+g$ always adds to the same value

A reminder about ellipses

Definition of
 $e=\frac{\sqrt{a^{2}-b^{2}}}{a}$

$$
\begin{aligned}
& e=\frac{\sqrt{\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}}-\frac{c^{2}}{1-\epsilon^{2}}}}{\frac{c}{1-\epsilon^{2}}} \\
& e^{2}=\frac{\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}}-\frac{c^{2}}{1-\epsilon^{2}}}{\frac{c^{2}}{(1-\epsilon)^{2}}}
\end{aligned}
$$

So ε is the eccentricity

$$
\begin{gathered}
e^{2}=\frac{\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}}-\frac{c^{2}-\epsilon^{2} c^{2}}{\left(1-\epsilon^{2}\right)^{2}}}{\frac{c^{2}}{\left(1-\epsilon^{2}\right)^{2}}} \\
e^{2}=\frac{c^{2}-c^{2}+\epsilon^{2} c^{2}}{c^{2}} \\
e^{2}=\epsilon^{2}
\end{gathered}
$$

$$
e=\epsilon
$$

A reminder about ellipses

 pencil around the tacks. The Sun is at one focus.

As a planet moves around the sun, what can we say about the area swept out by the orbit?

In a small time Δt, the area swept out is the area of the triangle OAB

As a planet moves around the sun, what can we say about the area swept out by the orbit?

In a small time $\Delta \mathrm{t}$, the area swept out is the area of the triangle OAB... but Δt is small, so $\Delta \theta$ is small. $\cos (\Delta \theta) \sim 1, \sin (\Delta \theta) \sim \Delta \theta$

$$
d A=0.5 x y=0.5 r^{2} \Delta \theta
$$

A brief step back to Section 3.4 (Kepler's 2nd law)

As a planet moves around the sun, what can we say about the area swept out by the orbit?

$$
A=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}} r^{2} d \theta
$$

$$
\text { Recall } l=m r^{2} \dot{\theta}=m r^{2} \frac{d \theta}{d t}
$$

$$
d \theta=\frac{l d t}{m r^{2}}
$$

$$
A=\frac{1}{2} \int_{t\left(\theta_{0}\right)}^{t\left(\theta_{1}\right)} r^{2} \frac{l d t}{m r^{2}}
$$

$$
A=\frac{l}{2 m} \int_{t\left(\theta_{0}\right)}^{t\left(\theta_{1}\right)} d t
$$

Constant for this system!

$$
\begin{array}{cc}
\frac{d A}{d t}=\frac{r^{2} \omega}{2} & \text { Recall: } \\
A=\pi a b & a=\frac{c}{1-\epsilon^{2}}, b=\frac{c}{\sqrt{1-\epsilon^{2}}} \\
\tau=\frac{A}{d A / d t}=\frac{2 \pi a b}{r^{2} \omega} & (b / a)=\sqrt{1-\epsilon^{2}} \\
\tau^{2}=\frac{4 \pi^{2} a^{2} b^{2}}{r^{4} \omega^{2}} & b^{2}=a^{2}\left(1-\epsilon^{2}\right) \\
\tau^{2}=\frac{4 \pi^{2} a^{4}\left(1-\epsilon^{2}\right)}{r^{4} \omega^{2}} & c=\frac{l^{2}}{\mu \gamma}=\frac{\mu^{2} r^{4} \omega^{2}}{\mu \gamma}=\frac{\mu r^{4} \omega^{2}}{\gamma} \\
\tau^{2}=\frac{4 \pi^{2} a^{4}\left(1-\epsilon^{2}\right)}{r^{4}(c \gamma) /\left(\mu r^{4}\right)} & \omega^{2}=\frac{c \gamma}{\mu r^{4}} \\
\tau^{2}=\frac{4 \mu \pi^{2} a^{3}}{\gamma} &
\end{array}
$$

Continuing with Kepler's third law

$$
\begin{gathered}
\tau^{2}=\frac{4 \mu \pi^{2} a^{3}}{\gamma} \\
\gamma=G m_{e} m_{s}, \mu=\frac{m_{e} m_{s}}{m_{e}+m_{s}} \\
\frac{\mu}{\gamma}=\frac{m_{e} m_{s}}{\left(m_{e}+m_{s}\right)\left(G m_{e} m_{s}\right)}=\frac{1}{G\left(m_{e}+m_{s}\right)}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mu}{\gamma} \sim \frac{1}{G m_{s}} \\
\tau^{2}=\frac{4 \pi^{2}}{G m_{s}} a^{3}
\end{gathered}
$$

For example, for earth and sun, where $m_{s} \gg m_{e}$

Square of period proportional to cube of semimajor axis

Energy of the orbit

$$
\begin{array}{rlrl}
\frac{1}{2} \mu \dot{r}^{2}+U_{\text {eff }}(r)=E & r(\phi) & =\frac{c}{1+\epsilon \cos \phi} \\
\dot{r}\left(r_{\text {min }}\right)=0 \rightarrow U_{\text {eff }}\left(r_{\text {min }}\right)=E & r_{\text {min }} & =\frac{c}{1+\epsilon} \\
U\left(r_{\text {min }}\right)+\frac{l^{2}}{2 \mu r_{\text {min }}^{2}}=E & r_{\max } & =\frac{c}{1-\epsilon} \\
-\frac{\gamma}{r_{\text {min }}}+\frac{l^{2}}{2 \mu r_{\text {min }}^{2}}=E & c & =\frac{l^{2}}{\mu \gamma}
\end{array}
$$

Energy of the orbit

$$
\begin{array}{cc}
-\frac{\gamma}{r_{\min }}+\frac{l^{2}}{2 \mu r_{\text {min }}^{2}}=E & \\
r_{\min }=\frac{l^{2}}{\mu \gamma(1+\epsilon)} & \mathrm{E}>0 \text { when } \varepsilon>1 \\
-\frac{\gamma^{2} \mu(1+\epsilon)}{l^{2}}+\frac{\mu \gamma^{2}(1+\epsilon)^{2}}{2 l^{2}}=E & \mathrm{E}<0 \text { when } \varepsilon<1 \\
E=\frac{\mu \gamma^{2}\left((1+\epsilon)^{2}-2(1+\epsilon)\right)}{2 l^{2}} & \mathrm{E}=0 \text { when } \varepsilon=1 \\
E=\frac{\mu \gamma^{2}\left(\epsilon^{2}-1\right)}{2 l^{2}} &
\end{array}
$$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \cos \phi=x / r \\
r=\frac{c}{1+\cos \phi} \\
r(1+x / r)=c \\
r+x=c \\
r=c-x \\
r^{2}=(c-x)^{2}=x^{2}+y^{2} \\
c^{2}+x^{2}-2 x c=x^{2}+y^{2} \\
c^{2}-2 c x=y^{2}
\end{gathered}
$$

Get a parabola when energy $=0$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \cos \phi=x / r \\
r=\frac{c}{1+\epsilon \cos \phi} \\
r \rightarrow \infty \text { when } \epsilon \cos \phi_{\max }=-1
\end{gathered}
$$

There is a maximum angle that the satellite can reach!

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \cos \phi=x / r \\
r=\frac{c}{1+\epsilon \cos \phi} \\
r(1+\epsilon x / r)=c \\
r+\epsilon x=c \\
r=c-\epsilon x
\end{gathered}
$$

Note sign
swap

$$
r^{2}=(c-\epsilon x)^{2}=x^{2}+y^{2}
$$

$$
c^{2}+\epsilon^{2} x^{2}-2 c \epsilon x=x^{2}+y^{2}
$$

compared to before

$$
\left(1-\epsilon^{2}\right) x^{2}+2 c \epsilon x+y^{2}=c^{2}
$$

Now $\left(1-\varepsilon^{2}\right)<0$
$x^{2}+\frac{2 c \epsilon}{1-\epsilon^{2}} x+\frac{y^{2}}{1-\epsilon^{2}}=c^{2} /\left(1-\epsilon^{2}\right)$
$x^{2}-\frac{2 c \epsilon}{\epsilon^{2}-1} x-\frac{y^{2}}{\epsilon^{2}-1}=-c^{2} /\left(\epsilon^{2}-1\right)$
$(x-d)^{2}-\frac{y^{2}}{\epsilon^{2}-1}=-c^{2} /\left(1-\epsilon^{2}\right)+d^{2}$

Hyperbola:

$$
\frac{(x-\delta)^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1
$$

8.28 and 8.29 in small groups or by yourself

Given a satellite launch with burnout (when the rocket shuts down) at a certain angle, how can we calculate the eccentricity and apogee/perigee of the orbit?

Launching a satellite

Consider burnout a

 distance r_{b} from the center of the earth with velocity v_{b}Call the angle between v_{b} and r_{b} to be γ

The orbit

Angular momentum about center of earth is a constant $=\mathrm{mr}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} \sin \gamma=\mathrm{L}$. At perigee/apogee, $m r v=L$ (since r and v are perpendicular)

Launching a satellite

Energy at burnout $=\frac{m}{2} v_{b}^{2}-\frac{G M_{e} m}{r_{b}}=$ Constant
Energy later $=\frac{m}{2} v^{2}-\frac{G M_{e} m}{r}=\frac{m}{2} v_{b}^{2}-\frac{G M_{e} m}{r_{b}}$

$$
v^{2}-v_{b}^{2}=2 G M_{e}\left(\frac{1}{r}-\frac{1}{r_{b}}\right)
$$

Launching a satellite

E conservation $v^{2}-v_{b}^{2}=2 G M_{e}\left(\frac{1}{r}-\frac{1}{r_{b}}\right)$

$$
r v=r_{b} v_{b} \sin \gamma
$$

L conservation

$$
v^{2}=\left(r_{b} / r\right)^{2} v_{b}^{2} \sin ^{2} \gamma
$$

$$
\begin{gathered}
\left(r_{b} / r\right)^{2} v_{b}^{2} \sin ^{2} \gamma-v_{b}^{2}=2 G M_{e}\left(\frac{1}{r}-\frac{1}{r_{b}}\right) \\
\sin ^{2} \gamma-\left(\frac{r^{2}}{r_{b}^{2}}\right)=\frac{2 G M_{e}}{v_{b}^{2}}\left(\frac{r}{r_{b}^{2}}-\frac{r^{2}}{r_{b}^{3}}\right) \\
\sin ^{2} \gamma-\left(\frac{r^{2}}{r_{b}^{2}}\right)=\frac{2 G M_{e}}{v_{b}^{2} r_{b}}\left(\frac{r}{r_{b}}-\frac{r^{2}}{r_{b}^{2}}\right) \\
\left(\frac{r}{r_{b}}\right)^{2}\left(\frac{2 G M_{e}}{r_{b} v_{b}^{2}}-1\right)-\frac{2 G M_{e}}{r_{b} v_{b}^{2}}\left(\frac{r}{r_{b}}\right)+\sin ^{2} \gamma=0
\end{gathered}
$$

Solving the quadratic equation

$$
\begin{gathered}
\left(\frac{r}{r_{b}}\right)^{2}\left(\frac{2 G M_{e}}{r_{b} v_{b}^{2}}-1\right)-\frac{2 G M_{e}}{r_{b} v_{b}^{2}}\left(\frac{r}{r_{b}}\right)+\sin ^{2} \gamma=0 \\
k=\frac{2 G M_{e}}{r_{b} v_{b}^{2}}, x=r / r_{b} \\
x^{2}(k-1)-k x+\sin ^{2} \gamma=0 \\
x=\frac{k \pm \sqrt{k^{2}-4(k-1) \sin ^{2} \gamma}}{2(k-1)}
\end{gathered}
$$

Two solutions - smaller for perigee, larger for apogee

$$
\begin{gathered}
\left(\frac{r}{r_{b}}\right)^{2}\left(\frac{2 G M_{e}}{r_{b} v_{b}^{2}}-1\right)-\frac{2 G M_{e}}{r_{b} v_{b}^{2}}\left(\frac{r}{r_{b}}\right)+\sin ^{2} \gamma=0 \\
k=\frac{2 G M_{e}}{r_{b} v_{b}^{2}}, x=r / r_{b} \\
x^{2}(k-1)-k x+\sin ^{2} \gamma=0 \\
x=\frac{k \pm \sqrt{k^{2}-4(k-1) \sin ^{2} \gamma}}{2(k-1)}
\end{gathered}
$$

A satellite launched from earth burns out at a height of 300 km at $8,500 \mathrm{~m} / \mathrm{s}$ and a zenith angle $=85$ degrees. What are the orbit apogee, perigee and eccentricity?

Careful! r is height from center of earth (need 6.38 e6 meters extra)
$x=0.979,1.56$

Altitude at perigee $=$ 0.979(6.38e6 + 300e3) meters
$=160 \mathrm{~km}$ above the earth

Altitude at apogee =
1.56(6.38e6 + 300e3) meters
$=4000 \mathrm{~km}$ above the earth

Altitude at perigee $=$
$0.979(6.38 \mathrm{e} 6+300 \mathrm{e} 3)=$ 6540 km above earth center

Altitude at apogee $=$
$1.56(6.38 \mathrm{e} 6+300 \mathrm{e} 3)=$
10420 km above earth center

$$
r(\phi)=\frac{c}{1+\epsilon \cos \phi}
$$

$\mathrm{rmin} / \mathrm{rmax}=(1-\varepsilon) /(1+\varepsilon)=0.63$
so eccentricity $=0.23$

Change of orbit (back to Taylor)

Know that r of first orbit at given $\Phi=r$ of second orbit (after a thrust push)

Consider thrust at perigee/apogee in tangential direction (so direction of velocity doesn't change)

$$
\begin{aligned}
r(\phi) & =\frac{c}{1+\epsilon \cos \phi} \\
r_{1}(0) & =c_{1} /\left(1+\epsilon_{1}\right) \\
r_{2}(0) & =c_{2} /\left(1+\epsilon_{2}\right) \\
r_{1}(0)=r_{2}(0) & \rightarrow \frac{c_{1}}{1+\epsilon_{1}}=\frac{c_{2}}{1+\epsilon_{2}}
\end{aligned}
$$

Thrust factor

$$
c=\frac{l^{2}}{\mu \gamma} \rightarrow c_{2}=\lambda^{2} c_{1}
$$

$l=\mu r v$ constant $\rightarrow l_{2}=\lambda v_{1}$

$$
\begin{array}{cl}
\frac{c_{1}}{1+\epsilon_{1}}=\frac{c_{2}}{1+\epsilon_{2}} & \\
c_{2}=\lambda^{2} c_{1} & \text { If } \lambda \text { positive, what } \\
\frac{c_{1}}{1+\epsilon_{1}}=\frac{c_{1} \lambda^{2}}{1+\epsilon_{2}} & \\
\text { ecces that mean for } \\
1+\epsilon_{2}=\lambda^{2}\left(1+\epsilon_{1}\right) & \text { what happens ifilarly, } \\
\epsilon_{2}=\lambda^{2} \epsilon_{1}+\left(\lambda^{2}-1\right) &
\end{array}
$$

First part of example 8.6 together
8.3,8.12,8.15,8.17,8.18,8.33

