
223But what does this tell us about mechanics?

L “ T ´ Upx, y, zq

T “ 1

2
mv

2 “ 1

2
m

9r2 “ 1

2
mp 9x2 ` 9y2 ` 9z2q

BL
Bx “ ´BU

Bx “ F

x

BL
B 9x “ BT

B 9x “ m 9x “ p

x

d

dt

BL
B 9x “ d

dt

p

x

“ 9p
x

“ F

x

Ñ
BL
Bx “ d

dt

BL
B 9x

Define the Lagrangian as: Note minus 
sign

T has no
x dependence U has no 

dependence 
on xdot

Newton



224But what does this tell us about mechanics?

BL
Bx “ d

dt

BL
B 9x

BL
By “ d

dt

BL
B 9y

BL
Bz “ d

dt

BL
B 9z

From last slide. Repeat to 
get the other two equations.
These are in form of Euler-
Lagrange equations!

S “ Action integral “
ª t2

t1

Ldt “
ª t2

t1

pT ´ Uqdt is stationary

Hamilton’s principle:



225Keys to using Lagrange’s Equations

BL
Bx “ d

dt

BL
B 9x

BL
By “ d

dt

BL
B 9y

BL
Bz “ d

dt

BL
B 9z

BL
Bq1

“ d

dt

BL
B 9q1

BL
Bq2

“ d

dt

BL
B 9q2

BL
Bq3

“ d

dt

BL
B 9q3

Can use more
generalized
coordinates

qi (generalized coordinates) 
can really be any coordinates 
in any frame, but remember to 

write down
Lagrangian in an inertial frame

Why is this?



226Keys to using Lagrange’s Equations

BL
Bq1

“ d

dt

BL
B 9q1

BL
Bq2

“ d

dt

BL
B 9q2

BL
Bq3

“ d

dt

BL
B 9q3

Additional generalized 
coordinates for every new 

particle. Can use, for 
example, center of mass 

position and relative position 
from CM

BL
Bp1

“ d

dt

BL
B 9p1

BL
Bp2

“ d

dt

BL
B 9p2

BL
Bp3

“ d

dt

BL
B 9p3



227Some examples (following Taylor)
A particle moves in a conservative force field in 

two dimensions. What are the equations of 
motion, using Cartesian coordinates?

L “ Lpx, y, 9x, 9yq “ T ´ U “ 1

2
mp 9x2 ` 9y2q ´ Upx, yq

BL
Bx “ d

dt

BL
B 9x

BL
Bx “ ´BU

Bx “ F

x

BL
B 9x “ m 9x

BL
Bx “ d

dt

BL
B 9x Ñ F

x

“ m:x

similarly F

y

“ m:y



228From last slide

BL
Bx “ ´BU

Bx “ F

x

BL
B 9x “ m 9x

BL
Bqi
BL
B 9qi

Generalize

ith component of generalized force

ith component of generalized momentum

And Lagrange says the generalized 
force = rate of change of generalized 
momentum

BL
Bqi

“ d

dt

BL
B 9qi



229Another examples (following Taylor)
A particle moves in a conservative force field in 

two dimensions. What are the equations of 
motion, using Polar coordinates?

Fr = mar

L “ Lpr,�, 9r, 9�q “ T ´ U “ 1

2
mp 9r2 ` r2 9�2q ´ Upr,�q

BL
Br “ d

dt

BL
B 9r

mr 9�2 ´ BU
Br “ d

dt
m 9r “ m:r

mr 9�2 ` Fr “ d

dt
m 9r “ m:r

Fr “ mp:r ´ r 9�2q



230Continuing on

BL
B� “ d

dt

BL
B 9�

´BU
B� “ d

dt
pmr2 9�q

F “ rU

F� “ prUq�
rU “ BU

Br r̂ ` 1

r

BU
B� �̂

prUq� “ 1

r

BU
B�

BU
B� “ rprUq�

I! “ L

Torque “ � “ dL

dt

BU
B� “ rprUq� “ ´rF�

rF� “ d

dt
I! “ d

dt
L



231A useful thing to have spotted

BL
Bqi

“ d

dt

BL
B 9qi

BL
Bqi

“ 0 Ñ
d

dt

BL
B 9qi

“ 0 Ñ BL
B 9qi

conserved



232Go ahead

And work on problem 
7.1 yourself, and then 
we’ll work on 7.2 and 
7.17 together



233More examples from Taylor (chapter 7.2)

Two dimensional 
system, but really need 
only one coordinate to 
describe the system 
due to constraints of 
the rod (since rod 
length is constant)

l!

xO

y=0
m



234More examples from Taylor (chapter 7.2)

l!

xO

y=0

Torque on 
mass about O

m

ml2 “ I

:� “ ↵

� “ I↵

L “ T ´ U “ 1

2

mpl2 9�2q ´ mgy

L “ T ´ U “ 1

2

mpl2 9�2q ´ mglp1 ´ cos�q
BL
B� “ d

dt

BL
B 9�

´mgl sin� “ d

dt
pml2 9�q “ ml2 :�



235More examples from Taylor (chapter 7.3), just to see...

l1θ1

xO

y=0
m1

θ2

l2

9x1 “ l1 cos ✓1
9
✓1

9y1 “ l1 sin ✓1
9
✓1

9x1
2 ` 9y12 “ l

2
1

9
✓

2
1

9x2 “ l1 cos ✓1
9
✓1 ` l2 cos ✓2

9
✓2

9y2 “ l1 sin ✓1
9
✓1 ` l2 sin ✓2

9
✓2

9x2
2 ` 9y22 “ l

2
1

9
✓

2
1 ` l

2
2

9
✓

2
2 ` 2l1l2

9
✓1

9
✓2pcos ✓1 cos ✓2 ` sin ✓1 sin ✓2q

9x2
2 ` 9y22 “ l

2
1

9
✓

2
1 ` l

2
2

9
✓

2
2 ` 2l1l2

9
✓1

9
✓2 cosp✓1 ´ ✓2q

m2

L “ T ´ U “ 1

2

m1p 9x2
1 ` 9y21q ` 1

2

m2p 9x2
2 ` 9y22q ´ m1gy1 ´ m2gy2

x1 “ l1 sin ✓1, y1 “ l1p1 ´ cos ✓1q
x2 “ x1 ` l2 sin ✓2 “ l1 sin ✓1 ` l2 sin ✓2

y2 “ y1 ` l2p1 ´ cos ✓2q “ l1p1 ´ cos ✓1q ` l2p1 ´ cos ✓2q



236More examples from Taylor (chapter 7.3)

l1θ1

xO

y=0
m1

θ2

l2

BL
B✓1

“ d

dt

BL
B 9✓1

´m2l1l2 9✓1 9✓2 sinp✓1 ´ ✓2q ´ pm1 ` m2qgl1 sin ✓1 “
d

dt

”
m1l

2
1

9✓1 ` m2l
2
1

9✓1 ` m2l1l2 9✓2 cosp✓1 ´ ✓2q
ı

BL
B✓2

“ d

dt

BL
B 9✓2

m2l1l2 9✓1 9✓2 sinp✓1 ´ ✓2q ´ m2gl2 sin ✓2 “
d

dt

”
m2l

2
2

9✓2 ` m2l1l2 9✓1 cosp✓1 ´ ✓2q
ı

L “ T ´ U “ 1

2

m1p 9x2
1 ` 9y21q ` 1

2

m2p 9x2
2 ` 9y22q ´ m1gy1 ´ m2gy2

L “ 1

2

m1l
2
1

9
✓

2
1 ` 1

2

m2

´
l

2
1

9
✓

2
1 ` l

2
2

9
✓

2
2 ` 2l1l2

9
✓1

9
✓2 cosp✓1 ´ ✓2q

¯

´m1gl1p1 ´ cos ✓1q ´ m2g pl1p1 ´ cos ✓1q ` l2p1 ´ cos ✓2qq

m2



237More examples from Taylor (chapter 7.3)

l1θ1

xO

y=0
m1

θ2

l2

BL
B✓1

“ d

dt

BL
B 9✓1

´m2l1l2 9✓1 9✓2 sinp✓1 ´ ✓2q ´ pm1 ` m2qgl1 sin ✓1 “
d

dt

”
m1l

2
1

9✓1 ` m2l
2
1

9✓1 ` m2l1l2 9✓2 cosp✓1 ´ ✓2q
ı

BL
B✓2

“ d

dt

BL
B 9✓2

m2l1l2 9✓1 9✓2 sinp✓1 ´ ✓2q ´ m2gl2 sin ✓2 “
d

dt

”
m2l

2
2

9✓2 ` m2l1l2 9✓1 cosp✓1 ´ ✓2q
ı

No full solutions, but we’ll get to 
small-angle solutions in Chapter 11. 

Imagine doing this with Newton, 
though?

m2



238Now for some terminology

BL
Bqi

“ d

dt

BL
B 9qi

Let’s say we chose
q1 = θ1, q2 = θ2

These relationships do 
not depend on time, so 
they are referred to as 
being natural

r1 “ x1 ˆ

x1 ` y1 ˆ

y1

r2 “ x2 ˆ

x2 ` y2 ˆ

y2

with

x1 “ l1 sin ✓1

y1 “ l1 cos ✓1

x2 “ l1 sin ✓1 ` l2 sin ✓2

y2 “ l1 cos ✓1 ` l2 cos ✓2



239More terminology

Two dimensional 
system, but really need 
only one coordinate to 
describe the system 
due to constraints of 
the rod. We call such 
systems constrained

l!

x

y

O

y=0
m



240More terminology

This system, with a ball 
moving along this 
bead, is also 
constrained



241And yet a bit more terminology

l1!1

x

y

O

y=0
m1

!2

l2

System has two degrees of 
freedom, and is described 
by two generalized 
coordinates. If these two 
numbers are equal, the 
system is holonomic



242Why does this work for problems like this?

Ball has (for example) 
gravity pulling it down, 
but also a constraint 
force/normal force that 
keeps it moving along 
the parabola. Why 
doesn’t this matter?

FN



243Lagrange’s Equations with constraints

F
tot

“ F
cstr

` F

F “ ´rU
Fcstr

Total force
Constraining force

Other forces

Other forces (ie gravity, 
etc) are conservative 
and derivable from a 
potential energy

L “ T ´ U



244Follow similar strategy as before

S “ Action integral “
ª t2

t1

Ldt “
ª t2

t1

pT ´ Uqdt is stationary

Recall Hamilton’s principle:

Particle passes through r1 and r2 at t1 and t2

Right path

Another
(potentially
wrong) path

path difference

✏pt1q “ ✏pt2q “ 0

Rptq “ rptq ` ✏ptq



245Define action for right/wrong paths

action for the 
correct path

action for 
arbitrary path

change in action 
between paths

S0 “
ª t2

t1

T pr, 9r, tq ´ Upr, 9r, tqdt

S0 “
ª t2

t1

m

2
9r2 ´ Upr, 9r, tqdt

S “
ª t2

t1

T pR, 9R, tq ´ UpR, 9R, tqdt

S “
ª t2

t1

m

2
9R2 ´ UpR, 9R, tqdt

S “
ª t2

t1

m

2
p 9r ` 9✏q2 ´ UpR, 9R, tqdt

S ´ S0 “ �S “
ª t2

t1

m

2
9✏2 ` m 9r ¨ 9✏ ´

´
UpR, 9R, tq ´ Upr, 9r, tq

¯
dt



246Follow similar strategy as before

Zero for 
small ε

�S “
ª t2

t1

m

2
9✏2 ` m 9r ¨ 9✏ ´

´
UpR, 9R ´ Upr, 9r, tq

¯
, tqdt

UpR, 9R, tq ´ Upr, 9r, tq “ Upr ` ✏, 9r ` 9✏, tq ´ Upr, 9r, tq
UpR, 9R, tq ´ Upr, 9r, tq “ rUpr, 9r, tq ¨ ✏

Recall definition 
of gradient

�S “
ª t2

t1

rm 9r ¨ 9✏ ´ rUpr, 9r, tq ¨ ✏s dt



247And once again integrate by parts and use boundary conditions

Zero because 
"(t1) = "(t2) = 0

Integrate
by parts:

�S “
ª t2

t1

r´m✏ ¨ :r ´ rU ¨ ✏s dt

�S “
ª t2

t1

rm 9r ¨ 9✏ ´ rUpr, 9r, tq ¨ ✏s dt
ª b

a
udv “ ruvsba ´

ª
vdu

u “ m 9r, dv “ 9✏dt
ª t2

t1

pm 9r ¨ 9✏qdt “ rm 9r ¨ ✏st2t1 ´
ª t2

t1

pm✏ ¨ :rqdt



248Working out the math

So we are left thinking about the dot product 
between # and the constraining force

�S “
ª

t2

t1

r´m✏ ¨ :r ´ rU ¨ ✏s dt

�S “ ´
ª

t2

t1

✏ ¨ rm:r ` rU s dt

m:r “ F
tot

“ F
cstr

` F “ F
cstr

´ rU

�S “ ´
ª

t2

t1

✏ ¨ rF
cstr

´ rU ` rU s dt

�S “ ´
ª

t2

t1

p✏ ¨ F
cstr

qdt



249What are the potential variations in path?

So we are left thinking about the dot product 
between # and the constraining force

Fcstr

# is a variation on the 
path that the particle 
could take. BUT it can 
only take a path along 
the surface allowed by 
the constraint



250What does it mean to have a constraining force?

So we are left thinking about the dot product 
between # and the constraining force

Fcstr

The constraining force is 
a normal force, ie 
perpendicular to the 
volume/surface in which 
the particle can move. 
So ...

✏ ¨ Fcstr “ 0 Ñ �S “ 0



251Putting it together

The action integral is stationary at the right 
path, which means that Euler-Lagrange 

equations still apply

Remember that this only works if the 
constraining force is a normal force to the 

surface of motion



252More problems

You should try and become as comfortable 
as possible working out problems in the 

Lagrangian formalism, so let’s solve 
examples 7.4-7.7 on the board together, and 

then problems 7.16,7.20,7.23,7.34



253Homework

Taylor 7.3, 7.8, 7.14, 7.18, 7.29


