But what does this tell us about mechanics?

Define the LagrangianAas:/ Note minus

\ sign
L=T-U(x,y,z)

T = —mv° = §mr — §m(aj + 9 +,§2)
T has no o JdU
x dependence  >dz oz °©  Uhasno
0L _ 0T «—— dependence
or  o0i — ba on xdot
d oL d

it oz dt’c " "

0L d L

6_33 dt O Newton



But what does this tell us about mechanics?

oL d oL

or dtox  From last slide. Repeat to
oL d oL get the other two equations.
oy dtdy  These are in form of Euler-

oL d oL Lagrange equations!

0z dt 0%

Hamilton’s principle:

S = Action integral = J

t1

to
Ldt = J (T — U)dt is stationary
t1



Keys to using Lagrange’s Equations

oL doL  Canuse more
ox  dt 0% generalized
oL dJL  coordinates
Oy  dt oy >
oL d oL

0z dt 0%

di (generalized coordinates)
can really be any coordinates

in any frame, but remember to Why is this?

write down
Lagrangian in an inertial frame

0q3



Keys to using Lagrange’s Equations

Additional generalized
coordinates for every new
particle. Can use, for
example, center of mass
position and relative position
from CM



Some examples (following Taylor)

A particle moves in a conservative force field in
two dimensions. What are the equations of

motion, using Cartesian coordinates?
1

L= E(x,y,x,y) =1 -U = 5771(5132 + y2) - U(ajay)
oL _dot

or  dt 0

oL _ U _

or  Or

oL

— = Mmx

0z
0L _ doL
or  dt 0
similarly F,, = my

by
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From last slide

ith component of generalized force

= = F, Generalize

or  Or 0q;
&_L = Mmx " 0L
or 0q;

/

ith component of generalized momentum

And Lagrange says the generalized
force = rate of change of generalized
momentum

oL d oL

Jq;  dt 0g;



Another examples (following Taylor)

A particle moves in a conservative force field in
two dimensions. What are the equations of
motion, using Polar coordinates?

L= L(r6.#,8) =T ~U = sm( +r*¢*) ~ U(r, )

oL d oL

or  dt or
.o 0U d . .
mr —Ezamfrzmr
mr$2+FT=%mf=mf

FT:m(v'“'—rg.b2)

\

Fr = ma



Continuing on

oL d oL

— = — — lw =1L
0p  dt 9¢
(?U d
o6 dt (e
_ oU
F=VU % =1r(VU)y = —rFy
Fy = (VU) p g
oU 1 oU - TF¢ = —Jw = —1L
VU =514 1%5
10U Torque = T' — 2%
que = I' =
(VU)s =~ % dt
8U (V)

o



A useful thing to have spotted

oL d oL

04, i 0q;

d oL oL

= (0 — conserved

dt 0q; 0q;




And work on problem
7.1 yourself, and then
we’ll work on 7.2 and
7.17 together



More examples from Taylor (chapter 7.2)

Two dimensional
system, but really need
only one coordinate to
describe the system
due to constraints of
the rod (since rod
length is constant)




More examples from Taylor (chapter 7.2)

L=T-U= 1m(12¢ﬁ2) — mgy
O X . 2.
! L=T-U-= §m(l2¢2) — mgl(1 — cos ¢)
or _dac
: 0p  dt o¢
—mglsin ¢ = %(le@ = ml2$
2 _
Torque on mi= =1
mass about O ¢ =«

I' =1«



More examples from Taylor (chapter 7.3), just to see...

O x

1 . : 1 . :
» L=T-U-= iml(x% + y%) + §m2($§ + y%) — M19Y1 — M2gy2

r1 = ll Sin91,y1 = ll(l — COS(91)
To =21 + losinfy = l1sin 6y + 5 sin Oo
Yo = y1 + la(1 —cosby) =11 (1 —cosby) + l2(1 — cosby)

Qfl = ll COS 9191

yl = ll sin (9191

.2 .2 :
1+ Y1 ZZ%Q%

0

Lo = l1 COS 9191 + 5 cos 0292
Yo = [1 sin 9191 + [5 sin 9292
15?4 1jo? = l%@% + lg@% + 2l1129192(cos 61 cos 5 + sin 6y sin 6)
2o 4 1jo% = 126% + 1262 + 214150165 cos(01 — 0y)



More examples from Taylor (chapter 7.3)

1 . . 1 . .
O X) L=T-U-= §m1(a:f+y%)+§m2(l‘§+y§)—m1gy1—m29y2
1 o1 : : .
L= §m1l%9% + 5ma (l%@% + 1505 + 211150105 cos(6; — 92))

—m1gli(1 —cosfy) —mog (I1 (1 — cos 1) + I2(1 — cos b))

o _doc
001 Cdt &91
—mglllgéléQ sin(91 — 92) — (m1 + m2)911 sin 01 =

— [mlzfel + moliby + malilafs cos(6y — 92)]

dt
e _dor
005 ot 6(92

mglllgélég sin(6’1 — (92) — mggl2 sin 92 —

0

d - :
mo o [m2l§92 + mal1l2601 cos(61 — 92)]



More examples from Taylor (chapter 7.3)

O X No full solutions, but we'll get to

> small-angle solutions in Chapter 11.

Imagine doing this with Newton,
though?

o _doc
001 Cdt &91
—m21112é192 Siﬂ(@l — 92) — (m1 + m2)911 sin 01 =

— [mlzfel + moliby + malilafs cos(6y — 92)]

0

E i

= o _doc

: 005 Cdt @92

E mQleQéléz Sin(6’1 — (92) — m2912 sin o =
: d . :

© M2 pm [m2l§6’2 + malyla6; cos(01 — 92)]



Now for some terminology

oL d oL

Let's say we chose

0q; o dt 0q; q1=01,92=6>

ry = x1X1 + Y1y1
ro = ToXo + Y2yo
with

L1 = ll Sin (91
y1 = [1 cos b
Lo = ll sin (91 + l2 Sin 92

Yo = l1 cos 01 + [ cos by

These relationships do
not depend on time, so
they are referred to as
being natural



More terminology

Two dimensional
system, but really need
only one coordinate to
describe the system
due to constraints of
the rod. We call such
systems constrained




More terminology

This system, with a ball
moving along this
bead, is also
constrained



And yet a bit more terminology

System has two degrees of
freedom, and is described
by two generalized
coordinates. If these two
numbers are equal, the
system is holonomic



Why does this work for problems like this?

Ball has (for example)
gravity pulling it down,
but also a constraint
force/normal force that
keeps it moving along
the parabola. Why
doesn’t this matter?



Lagrange’s Equations with constraints

Constraining force
Total force | Other forces

T

‘ |

Ftot — cht'r + F
F=-VU

/

Other forces (ie gravity,

etc) are conservative L B
and derivable from a L=T-U
potential energy

chtr



Follow similar strategy as before

Recall Hamilton’s principle:

S = Action integral = f

t1

to
Ldt = f (T — U)dt is stationary
i1

Particle passes through ri and r2 at t1 and t2

R(t) = r(t) + €(t)
Another j N\
(potentially path difference

wrong) path  Right path

E(tl) — E(tg) =0



Define action for right/wrong paths

action for the
correct path

So= | L2 U(r,E t)dt
t1 2
t2 . . I
S = f T(R,R,t) — U(R,R, t)dt—)aCtl_OH for
b arbitrary path
t2 . .
S = %RQ _U(R, R, t)dt
t1
to )
S = f %(x’- + )%~ UR,R, t)dt
t1
to )
S — Sy =068 = %e’? Lo ¢ — (U(R,R,t) ~ U(r,f-,t)) dt
t1

T~ change in action

between paths



Follow similar strategy as before

Zero for
small €

UR,R,t)—U(r,i,t) =U(r+¢,1 + ¢ t) — Ulr, 1, t)
UR,R,t) — U(r,r,t) = VU(r,F,t) - €

Recall definition
of gradient

to
55:f (i ¢ — VU (r.£.1) - €] dt
{

1



And once again integrate by parts and use boundary conditions

08 = Imr - é — VU(r,r,t) - €| dt

Integrate  J,,
by parts: u = mr,dv = édt

to to
J (mr - €)dt = [mr - 6]2 — J (me - 1)dt
t1 \ t1
Zero because
e(t1) =e(t2) =0

to
(5S=J |—me-r — VU - €| dt
t

1



Working out the math

mr = Ftot — cht'r + F = chtr — VU

to
5S = —f ¢ - [Feostr — VU + VU] dt
4

1

to
55 — —J (6 . chtr,a)dt
t

1

So we are left thinking about the dot product
between ¢ and the constraining force



What are the potential variations in path?

So we are left thinking about the dot product
between ¢ and the constraining force

chtr

¢ IS a variation on the

path that the particle
could take. BUT it can
only take a path along
the surface allowed by
the constraint



What does it mean to have a constraining force?

So we are left thinking about the dot product
between ¢ and the constraining force

The constraining force is
a normal force, ie
perpendicular to the

Festr volume/surface in which

the particle can move.
SO ...

€ Festr =0—05=0




Putting it together

The action integral is stationary at the right
path, which means that Euler-Lagrange
equations still apply

Remember that this only works if the
constraining force is a normal force to the
surface of motion



More problems

You should try and become as comfortable
as possible working out problems in the
Lagrangian formalism, so let’s solve
examples 7.4-7.7 on the board together, and
then problems 7.16,7.20,7.23,7.34



Homework

Taylor 7.3, 7.8, 7.14, 7.18, 7.29



