Going to get away from Newtonian derivation of classical mechanics to a new version, given by Lagrange... But first we need a mathematical sidebar (ie Chapter 6)

What is the shortest path (ie the shortest function) connecting (x₁,x₁) and (x₂,y₂)? A straight line... but how do you prove this?

And what is the shortest path between two points on a sphere?

Let's start off in two dimensions in flat space

Let's start off in two dimensions

Let's start off in two dimensions

Let's start off in two dimensions

Infinitesimal path length

$$ds = \sqrt{dx^2 + dy^2}$$
$$dy = \frac{dy}{dx}dx$$

$$ds = \sqrt{dx^2 + dx^2 \frac{dy^2}{dx^2}}$$

All paths start at $ds = \sqrt{dx^2 \left(1 + \frac{dy^2}{dx^2}\right)} = dx\sqrt{1 + y'(x)^2}$ (x₁,y₁) and end at (x₂,y₂)

y $L = \int_{1}^{2} ds = \int_{x_{1}}^{x_{2}} \sqrt{1 + y'(x)^{2}} dx$

We know that calculus already tells us how to find the minimum/maximum of a single function: dy/dx = 0 gives us a stationary point.

dy/dx = -2x-2=0 so x=-1 is the stationary point

Wanted to find stationary point of

$$L = \int_{1}^{2} ds = \int_{x_{1}}^{x_{2}} \sqrt{1 + y'(x)^{2}} dx$$

More generally find stationary point of $S = \int_{x_1}^{x_2} f[y, y', x] dx$

$$S = \int_{x_1}^{x_2} f[y, y', x] dx$$

Call correct solution y(x). Then $Y(x) = y(x) + \eta(x)$ is another (incorrect) solution

Call correct solution y(x). Then $Y(x) = y(x)+\eta(x)$ is another (incorrect) solution. But we know $Y(x_1) = y_1$ and $Y(x_2) = y_2$, so $\eta(x_1) = \eta(x_2) = 0$

 $Y(x) = y(x) + \alpha \eta(x)$ is another (incorrect) solution. The correct solution has $\alpha = 0$

$$S[\alpha] = \int_{x_1}^{x_2} f[Y, Y', x] dx$$
$$Y = \alpha \eta, Y' = \alpha \eta'$$
$$S[\alpha] = \int_{x_1}^{x_2} f[y + \alpha \eta, y' + \alpha \eta', x] dx$$

Solution then has $dS/d\alpha = 0$

$$\frac{d}{d\alpha}S[\alpha] = \int_{x_1}^{x_2} \frac{\partial}{\partial \alpha} f[y + \alpha \eta, y' + \alpha \eta', x] dx$$
 Clear to Integration by parts
$$\frac{d}{d\alpha}S[\alpha] = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \eta + \frac{\partial f}{\partial y'} \eta' \right] dx$$
 everyone?
$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y'} \eta' dx = \left[\eta \frac{\partial f}{\partial y'} \right]_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta \frac{d}{dx} \frac{\partial f}{\partial y'} dx$$

$$\frac{d}{d\alpha}S[\alpha] = 0 = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \eta + \frac{\partial f}{\partial y'} \eta' \right] dx$$

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y'} \eta' dx = \left[\eta \frac{\partial f}{\partial y'} \right]_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta \frac{d}{dx} \frac{\partial f}{\partial y'} dx$$

$$\frac{d}{d\alpha}S[\alpha] = 0 = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \eta - \eta \frac{d}{dx} \frac{\partial f}{\partial y'} \right] dx + \left[\eta \frac{\partial f}{\partial y'} \right]_{x_1}^{x_2}$$

But we know $\eta(x_1) = \eta(x_2) = 0$

$$\int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \eta - \eta \frac{d}{dx} \frac{\partial f}{\partial y'} \right] dx = 0$$

$$\int_{x_1}^{x_2} \eta(x) \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} \right] dx = 0$$

$$\int_{x_1}^{x_2} \eta(x) \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} \right] dx = 0$$

$$\rightarrow \frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$$

Because must hold for any η

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$$

Starting with example 6.1 in book

$$L = \int_{1}^{2} ds = \int_{x_{1}}^{x_{2}} \sqrt{1 + y'(x)^{2}} dx$$

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$$

Starting with example 6.1 in book

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$$

$$f = \sqrt{1 + y'(x)^2}$$

$$\frac{\partial f}{\partial y} = 0$$

$$\frac{\partial f}{\partial y'} = \frac{2y'}{2} \left(1 + y'(x)^2 \right)^{-0.5} = \frac{y'}{\sqrt{1 + y'^2}}$$

$$\frac{d}{dx} \frac{y'}{\sqrt{1 + y'^2}} = 0 \to \frac{y'}{\sqrt{1 + y'^2}} = C \text{ (constant)}$$

$$y'^2 = C^2 (1 + y'^2)$$

$$y'^2 (1 - C^2) = C^2$$

$$y'^2 = \frac{C^2}{1 - C^2}$$

$$y' = \frac{dy}{dx} = \text{constant} \to y = ax + b$$

Assume no friction, and try to find the path that gets a roller coster from related from point A to point B in minimum time?

$$time = \int_{1}^{2} \frac{ds}{v}$$

$$E = \frac{mv^{2}}{2} - mgy = const$$

$$E(t = 0) = 0 - 0 = 0 \rightarrow mgy = \frac{mv^{2}}{2}$$

$$v = \sqrt{2gy}$$

$$time = \int_{1}^{2} \frac{ds}{v}$$

$$v = \sqrt{2gy}$$

$$ds = \sqrt{dx^{2} + dy^{2}} = dy\sqrt{x'(y)^{2} + 1}$$

$$x' = dx/dy$$

$$time = \frac{1}{\sqrt{2g}} \int_{0}^{2} \frac{\sqrt{x'(y)^{2} + 1}}{\sqrt{y}} dy$$

Note that we have reversed the roles of x and y in the integral for simplicity (we will often do this change x for y for t, so just be careful!)

$$\frac{\partial f}{\partial x} - \frac{d}{dy} \frac{\partial f}{\partial x'} = 0 \quad f = \sqrt{\frac{x'^2 + 1}{y}}$$

$$\begin{split} \frac{\partial f}{\partial x} - \frac{d}{dy} \frac{\partial f}{\partial x'} &= 0 \quad f = \sqrt{\frac{x'^2 + 1}{y}} \\ \frac{\partial f}{\partial x} &= 0 \\ \frac{\partial f}{\partial x'} &= \frac{1}{2} \sqrt{\frac{y}{x'^2 + 1}} 2x' = \sqrt{\frac{x'^2 y}{x'^2 + 1}} \\ \frac{\partial f}{\partial x'} &= \frac{1}{2} \sqrt{\frac{y}{x'^2 + 1}} (2x'/y) = \sqrt{\frac{x'^2}{y(x'^2 + 1)}} \\ \frac{d}{dy} \sqrt{\frac{x'^2}{y(x'^2 + 1)}} &= 0 \\ \sqrt{\frac{x'^2}{y(x'^2 + 1)}} &= \text{const} \\ \frac{x'^2}{y(x'^2 + 1)} &= \text{const} = \frac{1}{2a} \end{split}$$

And some algebra

$$\frac{x'^2}{y(x'^2+1)} = \operatorname{const} = \frac{1}{2a}$$

$$2ax'^2 = yx'^2 + y$$

$$x'^2(2a-y) = y$$

$$x' = \sqrt{\frac{y}{2a-y}} = \frac{dx}{dy}$$

$$\int \sqrt{\frac{y}{2a-y}} dy = \int dx = x$$
Let $y = a(1-\cos\theta), dy = a\sin\theta d\theta$

$$x = \int \sqrt{\frac{a(1-\cos\theta)}{2a-a(1-\cos\theta)}} (a\sin\theta) d\theta$$

$$x = \int \sqrt{\frac{a(1-\cos\theta)}{a+a\cos\theta}} (a\sin\theta) d\theta$$

$$x = a \int \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \sin\theta d\theta$$

$$x = a \int \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \sin \theta d\theta$$

$$x = a \int \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \sqrt{1 - \cos^2 \theta} d\theta$$

$$x = a \int \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \sqrt{(1 + \cos \theta)(1 - \cos \theta)} d\theta$$

$$x = a \int (1 - \cos \theta) d\theta$$

$$x = a(\theta - \sin \theta) + const$$

$$x = a(\theta - \sin \theta) + \text{const}$$

 $y = a(1 - \cos \theta)$
curve passes through $(x, y) = (0, 0)$ at $\theta = 0 \rightarrow$
 $\text{const} = 0$
 $x = a(\theta - \sin \theta)$
 $y = a(1 - \cos \theta)$

Find stationary $S = \int_{u_1}^{u_2} f[y(u), y'(u), x'(u), x(u), u] du$ point of: x' = dx/du, y' = dy/du

Can repeat previous exercise to find:

$$\frac{\partial f}{\partial x} - \frac{d}{du} \frac{\partial f}{\partial x'} = 0$$

$$\frac{\partial f}{\partial y} - \frac{d}{du} \frac{\partial f}{\partial y'} = 0$$

Example 6.3, Problem 6.1 and then 6.16 together

Great circles as geodesics

