Now completely switching topics

Going to get away from Newtonian derivation of
classical mechanics to a new version, given by
Lagrange... But first we need a mathematical
sidebar (ie Chapter 6)




A few seemingly simple questions

What is the shortest path (ie the
shortest function) connecting (x1,x1)
and (x2,y2)? A straight line... but how do
you prove this?

And what is the shortest path between
two points on a sphere?
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Let’s start off in two dimensions in flat space

Infinitesimal/
path length dy = —=dz
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Let’s start off in two dimensions

Infinitesimal/
path length dy = Y 1
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Let’s start off in two dimensions

Infinitesimal/
path length dy = Y 1

ds = \/dx2 + dr?2—=

du2
ds = \/dx2 (1—|— d—?aJ:Q) = dar/1 + y'(x)2
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Let’s start off in two dimensions

Infinitesimal ___—> '
path length dy = X da
dx
dy?
ds = A|da? + da? ==
S \/x + ax 722

— 2 d_y2) _ / 2
All paths start at i = \/dm (1 Tz ) T dar/1+ y' ()

(x1,y1) and end at (x2,y2)
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Want to minimize the length of all possible paths

1 1 1 1 Ly
2 3 4 5 6

We know that
calculus already tells
us how to find the
minimum/maximum of
a single function:
dy/dx = 0 gives us a
stationary point.

dy/dx = -2x-2=0 so
x=-1is the stationary
point
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Calculus of variations

Wanted to find JQ f%’z
L = ds = 1 4+ / 2d
stationary point of . i . V1+y (z)2de

More generally find J .o/ zld
stationary point of

Call correct solution y(x). Then Y(x) = y(x)+n(x) is
another (incorrect) solution

(X2,y2)
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Calculus of variations

Call correct solution y(x). Then Y(x) = y(x)+n(x) is
another (incorrect) solution. But we know
Y(x1) = y1 and Y(x2) = y2, sO
n(x1) = n(x2) =0

Y(X) = y(x)+ an(x) is another (incorrect) solution.
The correct solution has a =0

(X2,y2)
Solution then has

dS/da =0




Calculus of variations

— f fIY,Y', z]|dx
Y =anY' = oy
Sla] = J fly +an,y +an', z]dx

Solution then has dS/da =0
d 20

——Sla] = B =o [y +any +an, x]dxCIearto
Integration ¢ 2 &f 8f ] everyone?
—S|a] =J dx
by parts\ dov Loy "oy L
v OV ay "= "oy - nd:v@y )



Euler-Lagrange Equation

d (= [of _ d of or "
da 1ol = _f [53/77 ndwﬁy’]dx+[n5y’]

T L1

But we know n(x1) = n(x2) =0

21of d of B
Ll [ﬁ_yn_ndazﬁy’]dx =0

2 of daofl,
J 1) [@_dxﬁy’]dx_o

L1




Euler-Lagrange Equation

2 Of d 0f B
Ll n(x) Sy oy dx = 0
) of d 0f 0
oy dx oy’

Because must hold for any n



Euler-Lagrange Equation

of d of _
oy dx oy




Starting with example 6.1 in book




Starting with example 6.1 in book

&_f_2_y/ / 2—0.5_ y/
ay/_ 9 (1+y($)) =

d Y/ 4 4
Az \/1 + y2 V1+y?
y/2 _ 02(1 4 y/2)
y?(1-C?) =C”
12 __ 02

1 — (C*?
y/ — dy/dﬂf = constant — y = ax + b

= (C (constant)

Y



And now the famous brachistochrone (Ex 6.2)

Assume no friction, and try to find the path that
gets a roller coster from related from point A to
point B in minimum time?

time = 2 @ A(XO,y=O)
E = m_vQ — mgy = const B(X1 ’y=y2)

2

mv2

E(t:O)=O—O=0—>mgy=T

v =14/29Yy




And now the famous brachistochrone (Ex 6.2)

2
time = @
1 v Note that we have
v = /29y reversed the roles
ds = \/da? + dy? = dy~/7'(y)% + 1 of xandy in the
, integral for
r = dx/dy T .
B — simplicity (we will
time = LJ V' (Y)® + 1dy often do this -
V29 Jo VY change x for y for
t, so just be

of d Of \/a;'2+1 careful!)
dx  dy ox’ =0 7= Y



Working out the math

of _daof f:\/a:’2+1
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And some algebra
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= const = —

y(z'? + 1) 2a
202" = ya'® +y

2% (2a —y) =y

N Y
— — dx/d
20 z/dy

f\/m—_dy—f —

Let y = a(1 — cosf),dy = asin 0df

a(l — cos @) ,
x—f\/ a—al—cos@)(asme)d(g
x—f\/ all = cos0) asin@)d@
a+ acost

€T = af\/l _Cosesinedﬁ
1+ cosf

:Uzafq/l_cosesin&l@
1+ cosf
T = aJ 1_0089\/1—6082 0do

1+ cosf
x:af

1 — cosf
1+ cos@

T = a,f(l — cos 6)df

v/ (1 + cos @) (1 — cosh)db

xr = a(f — sinf) + const



The solution
r = a(f — sinf) + const
= a(1 — cos0)
curve passes through (z,y) = (0,0) at 0 =0 —

const = 0
r = a(f —sinb)
y = a(l — cosf)
> i3
1oE | | | | | |




Euler-Lagrange with more than two variables

Find stationary 5 = |  /Ty(w).y/ (.2’ (u). (w), uldu
point of. v’ = dx/du,y’ = dy/du

Can repeat previous exercise to find:

of d oOf

ox du&’af’:()
0f d of B

oy  du oy’

0




Let’'s work on

Example 6.3, Problem 6.1
and then 6.16 together



Great circles as geodesics

Two different great circles are shown in hlack.
On the other hand, the parallels of |atitude

The meridians also are great circles. (otherthan the eguator) are not great circles.

(Those are the circles that go through :
the North and South Poles.) i
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