Begin our discussion of

 oscillations with Hooke'sLaw in one dimension

$$
\begin{gathered}
F(x)=-k x \\
U(x)=-\int F(x) d x=\frac{1}{2} k x^{2}
\end{gathered}
$$

As Taylor (the author) points out, this is the expected form. Taylor (the mathematician!) expanding about an equilibrium point ...

$$
U(x)=U(0)+U^{\prime}(0) x+\frac{1}{2} U^{\prime \prime}(0) x^{2}+\frac{1}{6} U^{\prime \prime \prime}(0) x^{3}+\ldots
$$

Mr. Robert Hooke

Wikipedia:
"An artist's impression of Robert Hooke. No authenticated contemporary likenesses of Hooke survive."

$$
\begin{gathered}
F=m a=m \ddot{x}=-k x \rightarrow \ddot{x}=-\omega^{2} x \\
\omega=\sqrt{k / m}
\end{gathered}
$$

As always, try exponential functions

$$
\begin{aligned}
& \ddot{x}=\frac{d^{2} x}{d t^{2}}=-\omega^{2} x \\
& x(t)=A e^{B t}, \dot{x}=A B e^{B t}, \ddot{x}=A B^{2} e^{B t}=B^{2} x \\
& B^{2} x=-\omega^{2} x \\
& B=i \omega \\
& \text { 2nd order } \\
& x(t)=x_{0} e^{i \omega t} \text { differential eqn, } \\
& \text { this is second } \\
& \text { solution }
\end{aligned}
$$

$$
\begin{gathered}
e^{z}=\sum_{q=0}^{q=\infty} \frac{z^{q}}{q!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \\
e^{i \theta}=\sum_{q=0}^{q=\infty} \frac{(i \theta)^{q}}{q!}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\ldots \\
i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=i^{2} \cdot i=-i, i^{4}=i^{2} \cdot i^{2}=1
\end{gathered}
$$

n is

$$
i^{0+4 n}=i^{0} i^{4 n}=i^{4 n}=\left(i^{4}\right)^{n}=1^{n}=1
$$

integer $\quad i^{1+4 n}=i^{1} i^{4 n}=i \cdot i^{4 n}=i\left(i^{4}\right)^{n}=i 1^{n}=i$

$$
\begin{gathered}
i^{2+4 n}=i^{2} i^{4 n}=-1^{4 n}=-\left(i^{4}\right)^{n}=-1 \cdot 1^{n}=-1 \\
i^{3+4 n}=i^{3} i^{4 n}=-i^{4 n}=-i \cdot\left(i^{4}\right)^{n}=-i \cdot 1^{n}=-i
\end{gathered}
$$

Odd powers of i are imaginary, even powers are real, alternating between positive and negative

$$
\begin{gathered}
e^{i \theta}=\sum_{q=0}^{q=\infty} \frac{(i \theta)^{q}}{q!}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\ldots \\
e^{i \theta}=\left[1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right]+i\left[\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\ldots\right] \\
e^{i \theta}=\cos \theta+i \sin \theta
\end{gathered}
$$

Can work out Taylor expansion for cosine and sine (see problem 2.18)

$$
\begin{array}{cc}
\eta(t)=A e^{\omega t} & \text { A complex } \\
A=a e^{i \delta} \rightarrow & \text { a } \delta \text { real } \\
\eta(t)=a e^{i \delta} e^{\omega t}=a e^{i \delta+\omega t} &
\end{array}
$$

Electric particle moving in constant B field

$$
\begin{gathered}
\mathbf{F}=q \mathbf{v} X \mathbf{B}=m \dot{\mathbf{v}} \\
m \dot{v}_{x}=q B v_{y} \\
m \dot{v}_{y}=-q B v_{x} \\
m \dot{v}_{z}=0 \rightarrow v_{z}=\mathrm{const}
\end{gathered}
$$

This we know
Particle with electric charge q moving in magnetic field. Let's align the magnetic field along the z-direction,

$$
\mathbf{B}=B \hat{\mathbf{z}}
$$

$$
\omega=\frac{q B}{m}
$$

$$
\left.\begin{array}{c}
\dot{v_{x}}=\omega v_{y} \\
\dot{v_{y}}=-\omega v_{x}
\end{array}\right] \begin{aligned}
& \text { Coupled } \\
& \text { equations! }
\end{aligned}
$$

$$
\eta=v_{x}+i v_{y}
$$

how to solve! $\quad \dot{\eta}=\dot{v}_{x}+i \dot{v}_{y}=\omega v_{y}-i \omega v_{x}$

$$
\dot{\eta}=-i \omega \eta
$$

Electric particle moving in constant B field

$$
\begin{aligned}
& \dot{\eta}=-i \omega \eta \\
& \eta(t)=A e^{-i \omega t}=\dot{x}(t)+i \dot{y}(t) \\
& \dot{v}_{z}=\mathrm{const} \rightarrow z(t)=z_{0}+v_{z} t \\
& \xi(t)=x(t)+i y(t)=\int \eta(t) d t=\int A e^{-i \omega t} d t \quad z(t)=z_{0}+v_{z} t \\
& q=-i \omega t, d q=-i \omega d t, d t=d q /(-i \omega) \\
& i^{-1}=1 \cdot i^{-1}=i^{4} \cdot i^{-1}=i^{3}=-i \\
& d t=i d q / \omega \\
& \xi(t)=\frac{i A}{\omega} \int e^{q} d q=\frac{i A}{\omega} e^{-i \omega t}+\text { constant } \\
& x(t)+i y(t)=\frac{i A}{\omega} e^{-i \omega t} \\
& x(0)+i y(0)=\frac{i A}{\omega} \\
& x(t)+i y(t)=[x(0)+i y(0)] e^{-i \omega t} \\
& \text { Particle moves in } \\
& \text { a helix in } x-y \\
& \text { direction } \\
& x(t) \sim \cos (\omega t+\delta) \\
& y(t) \sim \sin (\omega t+\delta) \\
& z(t)=z_{0}+v_{z} t \\
& \text { field }
\end{aligned}
$$

$$
\begin{gathered}
F=m a=m \ddot{x}=-k x \rightarrow \ddot{x}=-\omega^{2} x \\
\omega=\sqrt{k / m}
\end{gathered}
$$

$$
x(t)=A e^{i \omega t}+B e^{-i \omega t}
$$

$$
x(t)=A[\cos (\omega t)+i \sin (\omega t)]+B[\cos (-\omega t)+i \sin (-\omega t)]
$$

$$
x(t)=A[\cos (\omega t)+i \sin (\omega t)]+B[\cos (\omega t)-i \sin (\omega t)]
$$

$$
x(t)=(A+B) \cos (\omega t)+i(A-B) \sin (\omega t)
$$

$$
x(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t), \text { with } C_{1}=(A+B), C_{2}=i(A-B)
$$

Alternate forms of solution

$x(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)$, with $C_{1}=(A+B), C_{2}=i(A-B)$

$$
\begin{gathered}
D=\sqrt{C_{1}^{2}+C_{2}^{2}} \\
x(t)=D\left[\frac{C_{1}}{D} \cos (\omega t)+\frac{C_{2}}{D} \sin (\omega t)\right] \\
x(t)=D[\cos \delta \cos (\omega t)+\sin \delta \sin (\omega t)] \\
x(t)=D \cos (\omega t-\delta)
\end{gathered}
$$

$$
\begin{aligned}
& C_{1}=D \cos \delta \\
& C_{2}=D \sin \delta
\end{aligned}
$$

$\cos Y \cos Z+\sin Y \sin Z=\cos (Y-Z)$

Yet other alternate forms of solution

Same solution, but good to get comfortable with all these forms!

$$
x(t)=A e^{i \omega t}+B e^{-i \omega t}
$$

$$
x(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t), \text { with } C_{1}=(A+B), C_{2}=i(A-B)
$$

$$
\rightarrow A=\frac{1}{2}\left(C_{1}-i C_{2}\right), B=\frac{1}{2}\left(C_{1}+i C_{2}\right)
$$

$$
\rightarrow B=A^{*}, \text { with } z^{*}=x-i y \text { if } z=x+i y
$$

$$
x(t)=A e^{i \omega t}+A^{*} e^{-i \omega t}=2 \cdot \text { Real part of }\left[A e^{i \omega t}\right]
$$

$$
\begin{gathered}
x(t)=A \cos (\omega t-\delta) \\
x^{2}(t)=A^{2} \cos ^{2}(\omega t-\delta) \\
\dot{x}(t)=-A \omega \sin (\omega t-\delta) \\
\dot{x}^{2}(t)=A^{2} \omega^{2} \sin ^{2}(\omega t-\delta)
\end{gathered}
$$

Total E does not

 depend on time (as expected!)$$
\begin{gathered}
T=\frac{1}{2} m v^{2}=\frac{m}{2} A^{2} \omega^{2} \sin ^{2}(\omega t-\delta) \\
\omega^{2}=k / m \rightarrow
\end{gathered}
$$

$$
\begin{aligned}
& E=U+T=\frac{k}{2} A^{2} \cos ^{2}(\omega t-\delta)+\frac{k}{2} A^{2} \sin ^{2}(\omega t-\delta) \\
& E=\frac{k A^{2}}{2}\left[\cos ^{2}(\omega t-\delta)+\sin ^{2}(\omega t-\delta)\right]=k A^{2} / 2
\end{aligned}
$$

Problem 5.9 in small groups or by yourself, then Problem 5.3 together Then Problem 5.1 in small groups again or by yourself

$$
\begin{gathered}
\mathbf{F}=-k \mathbf{r}, \omega^{2}=k / m \\
\ddot{x}=-\omega^{2} x \\
\ddot{y}=-\omega^{2} y \\
x(t)=A_{x} \cos (\omega t) \\
y(t)=A_{y} \cos (\omega t-\delta)
\end{gathered}
$$
 \title{

How does 2d-motion
 \title{ \section*{How does 2d-motion change depending change depending on the phase?}

 on the phase?}}

Let's plot solutions where A_{x} or $A_{y}=0$, and where they are not zero, and with various phrases (think about what the phases mean)

$$
\begin{array}{cl}
F_{x}=-k_{x} x, \omega_{x}^{2}=k_{x} / m & \text { How does 2d-motion } \\
F_{y}=-k_{y} y, \omega_{y}^{2}=k_{y} / m & \text { change depending } \\
\ddot{x}=-\omega_{x}^{2} x & \text { on the two restoring } \\
\ddot{y}=-\omega_{y}^{2} y & \text { forces (ie the } \\
x(t)=A_{x} \cos \left(\omega_{x} t\right) & \text { relationship between } \\
\text { in } \omega \text {)? Easier to plot } \\
y(t)=A_{y} \cos \left(\omega_{y} t-\delta\right) & \text { of each other first }
\end{array}
$$

Damped oscillations (a comparison)

$$
\begin{gathered}
m \ddot{x}+b \dot{x}+k x=0 \\
L \ddot{q}+R \dot{q}+\frac{1}{C} q=0 \\
\text { Vtion }=0
\end{gathered}
$$

$$
m \ddot{x}+b \dot{x}+k x=0
$$

$$
\begin{array}{cl}
m \ddot{x}+b \dot{x}+k x=0 & \text { As is very often } \\
\ddot{x}+(b / m) \dot{x}+(k / m) x=0 & \text { the case, let's see } \\
\frac{b}{m}=2 \beta & \text { if an exponential } \\
\omega_{0}^{2}=\frac{k}{m} & \text { solution solves } \\
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0 & \text { this differential } \\
\text { equation }
\end{array}
$$

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0
$$

Guess at exponential

$$
x(t)=A e^{r t}
$$

$$
\begin{gathered}
\dot{x}=A r e^{r t}=r x \\
\ddot{x}=A r^{2} e^{r t}=r^{2} x \\
r^{2} x+2 \beta r x+\omega_{0}^{2} x=0 \\
r^{2}+2 \beta r+\omega_{0}^{2}=0
\end{gathered}
$$

Back to our classical mechanics problem

$$
\begin{gathered}
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0 \\
r^{2}+2 \beta r+\omega_{0}^{2}=0 \\
r=\frac{-2 \beta \pm \sqrt{4 \beta^{2}-4 \omega_{0}^{2}}}{2} \\
r=-\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}} \\
x(t)=A e^{r t} \\
x(t)=C_{1} e^{\left(-\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t}+C_{2} e^{\left(-\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t} \\
x(t)=e^{-\beta t}\left(C_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right)
\end{gathered}
$$

$$
x(t)=e^{-\beta t}\left(C_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right)
$$

As always, let's check ranges/extremes for the new variables we've introduced. No damping means $\beta=0$, so

$$
\begin{gathered}
x(t)=C_{1} e^{\sqrt{-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{-\omega_{0}^{2}} t} \\
x(t)=C_{1} e^{i \omega_{0} t}+C_{2} e^{-i \omega_{0} t}
\end{gathered}
$$

Get back (as expected) undamped harmonic oscillator we previously studied

$$
\begin{gathered}
x(t)=e^{-\beta t}\left(C_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right) \\
\text { if } \beta<\omega_{0}, \beta^{2}-\omega_{0}^{2}<0, \sqrt{\beta^{2}-\omega_{0}^{2}}=i \omega_{1} \\
\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}} \\
x(t)=e^{-\beta t}\left(C_{1} e^{i \omega_{1} t}+C_{2} e^{-i \omega_{1} t}\right) \\
x(t)=e^{-\beta t} \cos \left(\omega_{1} t-\delta\right)
\end{gathered}
$$

$x(t)$ is the product of two terms. What does this product look like? Let's plot this...
But what happens as we increase damping (ie increase β)?

$$
\begin{gathered}
x(t)=e^{-\beta t}\left(C_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2} t}}+C_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right) \\
\text { if } \beta>\omega_{0}, \beta^{2}-\omega_{0}^{2}>0
\end{gathered}
$$

Both exponentials are real: no oscillations when we have overdamping. Let's also plot this

One special case

$$
\begin{gathered}
x(t)=e^{-\beta t}\left(C_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right) \\
\text { if } \beta=\omega_{0} \cdots \\
x(t)=e^{-\beta t}
\end{gathered}
$$

We only have one $\longrightarrow x(t)=-t e^{-\beta t}$ solution now! What's the second one? Taylor give the answer (a

$$
\begin{gathered}
\dot{x}=\frac{d}{d t}\left(-t e^{-\beta t}\right) \\
\dot{x}=-e^{-\beta t}+t \beta e^{-\beta t} \\
\ddot{x}=\frac{d}{d t}\left(-e^{-\beta t}+t \beta e^{-\beta t}\right) \\
\ddot{x}=\beta e^{-\beta t}+\beta e^{-\beta t}-t \beta^{2} e^{-\beta t} \\
\ddot{x}=2 \beta e^{-\beta t}-t \beta^{2} e^{-\beta t}
\end{gathered}
$$ good guess)

Critical damping

$$
\begin{gathered}
x(t)=-t e^{-\beta t} \\
\dot{x}=-e^{-\beta t}+t \beta e^{-\beta t} \\
\ddot{x}=2 \beta e^{-\beta t}-t \beta^{2} e^{-\beta t} \\
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0 \\
2 \beta e^{-\beta t}-t \beta^{2} e^{-\beta t}+2 \beta\left(-e^{-\beta t}+t \beta e^{-\beta t}\right)+\omega_{0}^{2}\left(-t e^{-\beta t}\right)=0 \\
2 \beta-t \beta^{2}-2 \beta+2 t \beta^{2}-t \omega_{0}^{2}=0 \\
t\left(\beta^{2}-\omega_{0}^{2}\right)=0 \quad \text { But } \beta=\omega_{0}
\end{gathered}
$$

So general solution for critical damped case is

$$
x(t)=C_{1} e^{-\beta t}+C_{2} t e^{-\beta t}
$$

Let's work on problems 5.20, 5.23 , then you work on 5.28

In what cases do we want to most quickly dampen oscillations?

My favorite case（though not the most important one）

\qquad

$$
\begin{gathered}
m \ddot{x}+b \dot{x}+k x=F(t) \\
L \ddot{q}+R \dot{q}+\frac{1}{C} q=\mathcal{E}(t) \\
f(t)=F(t) / m \\
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=f(t)
\end{gathered}
$$

How about when we force oscillations?

Let's look at sinusoidal driving forces

$$
\begin{gathered}
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=f_{0} \cos (\omega t) \\
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=f_{0} \cos (\omega t)
\end{gathered}
$$

Guess a cosine with the same frequency
Can use

$$
x=C \cos (\omega t-\delta)
$$

exponentials $\quad \dot{x}=-C \omega \sin (\omega t-\delta)$ too (see Taylor) $\ddot{x}=-C \omega^{2} \cos (\omega t-\delta)$
$-C \omega^{2} \cos (\omega t-\delta)-2 C \beta \omega \sin (\omega t-\delta)+\omega_{0}^{2} C \cos (\omega t-\delta)=f_{0} \cos (\omega t)$
Useful generic identities:

$$
\begin{aligned}
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
\end{aligned}
$$

$$
-C \omega^{2} \cos (\omega t-\delta)-2 C \beta \omega \sin (\omega t-\delta)+\omega_{0}^{2} C \cos (\omega t-\delta)=f_{0} \cos (\omega t)
$$

$$
-C \omega^{2}[\cos (\omega t) \cos \delta+\sin (\omega t) \sin \delta]-2 C \beta \omega[\sin (\omega t) \cos \delta-\cos (\omega t) \sin \delta]
$$

$$
+\omega_{0}^{2} C[\cos (\omega t) \cos \delta+\sin (\omega t) \sin \delta]=f_{0} \cos (\omega t)
$$

For this to be true always, $\sin (\omega t)$ and $\cos (\omega t)$ terms must always balance:

$$
\begin{gathered}
C \cos (\omega t)\left[\left(\omega_{0}^{2}-\omega^{2}\right) \cos \delta+2 \beta \omega \sin \delta-f_{0} / C\right]=0 \\
C \sin (\omega t)\left[\left(\omega_{0}^{2}-\omega^{2}\right) \sin \delta-2 \beta \omega \cos \delta\right]=0
\end{gathered}
$$

$$
\begin{gathered}
C \cos (\omega t)\left[\left(\omega_{0}^{2}-\omega^{2}\right) \cos \delta+2 \beta \omega \sin \delta-f_{0} / C\right]=0 \\
C \sin (\omega t)\left[\left(\omega_{0}^{2}-\omega^{2}\right) \sin \delta-2 \beta \omega \cos \delta\right]=0 \\
\frac{\sin \delta}{\cos \delta}=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \\
\tan \delta=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \\
\left(\omega_{0}^{2}-\omega^{2}\right) \cos \delta+2 \beta \omega\left(\frac{2 \beta \omega \cos \delta}{\omega_{0}^{2}-\omega^{2}}\right)=f_{0} / C
\end{gathered}
$$

A useful identity: $\cos (q)=1 / \sqrt{\tan ^{2}(q)+1} \rightarrow$

$$
\begin{aligned}
& \frac{\omega_{0}^{2}-\omega^{2}}{\sqrt{1+4 \beta^{2} \omega^{2} /\left(w_{0}^{2}-\omega^{2}\right)^{2}}}+2 \beta \omega\left(\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \frac{1}{\sqrt{1+4 \beta^{2} \omega^{2} /\left(w_{0}^{2}-\omega^{2}\right)^{2}}}\right)=f_{0} / C \\
& \frac{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}}=f_{0} / C \\
& \sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}=f_{0} / C \\
& C=\frac{f_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
x(t)=C \cos (\omega t-\delta) \\
\tan \delta=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \\
C=\frac{f_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}}
\end{gathered}
$$

Let's examine some of the behavior of this solution. What happens when damping is small? What do we mean by a resonance?

Some examples of resonances

Some examples of resonances

Some examples of resonances

 ?

都

$$
C=\frac{f_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}}
$$

C maximum when $\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}\right]$ is a minimum Fixed $\omega \quad \omega_{0}^{\max }=\omega$
Fixed $\omega_{0} \quad \omega^{\max }=\omega_{2}=\sqrt{\omega_{0}^{2}-2 \beta^{2}}$
$\omega_{0}=\sqrt{k / m}=$ natural frequency of undamped oscillator $\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=$ frequency of damped oscillator $\omega=$ frequency of driving force
$\omega_{2}=\sqrt{\omega_{0}^{2}-2 \beta^{2}}=$ value of ω at which response is maximum

Let's work out Problem 5.41 together

From Problem 5.41

Full width at half maximum $=\mathrm{FWHM} \sim 2 \beta$

$$
\text { Quality factor } Q=\frac{w_{0}}{2 \beta}
$$

A word on transient solutions

$$
x_{t r}(t)=e^{-\beta t}\left(C_{t r}^{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+C_{t r}^{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right)
$$

We know the above is a solution to the undriven oscillator:

$$
m \ddot{x}+b \dot{x}+k x=0
$$

If we add $\mathrm{xtr}_{\mathrm{tr}}(\mathrm{t})$ to our nominal solution to the forced oscillator, we get back a new solution to the forced oscillator (since by definition in the differential equation is $==0$)

The full solution is $\cos (\omega t-\delta)+$ the above transients (which die out over time and often are ignored)
\qquad
Now slightly switching topics again
\qquad

```
.
#
```

 -
 2


```
I
```

 2
 , |
 What does it mean for a function f to be periodic (with period τ)?

$$
f(t+\tau)=f(t)
$$

$\cos (2 \pi t / \tau), \sin (2 \pi t / \tau), \cos (4 \pi t / \tau), \sin (6 \pi t / \tau)$ have period τ, as do all:
n is integer $\cos (n \omega t), \sin (n \omega t)$

$$
\omega=2 \pi / \tau
$$

And also this:

$$
f(t)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right]
$$

What Fourier tells us...

Any periodic function $\mathrm{f}(\mathrm{t})$ with period τ can be expressed as $f(t)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right]$

In other words, any

periodic function can be
built up from an infinite series of cos and sin terms

We will study this because we now know how to solve problem of damped oscillators with sinusoidal driving forces. Also because Fourier series are incredibly useful in engineering, other areas of physics, information processing, etc...

Fourier decomposition coefficients

$$
\begin{gathered}
f(t)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right] \\
a_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) \cos (n \omega t) d t \quad \mathrm{n}>0 \\
b_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) \sin (n \omega t) d t \quad \mathrm{n}>0 \\
a_{0}=\frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) d t \quad \text { Want proof? } \\
b_{0}=0 \quad \text { See problems } \\
\text { 5.46-5.48 }
\end{gathered}
$$

Let's evaluate Fourier coefficients for our example from before (Problem 5.49):

The constant term

$$
a_{0}=\frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) d t=\frac{1}{2} \int_{-1}^{1} f(t) d t=
$$

$\begin{aligned} & \text { Because } \\ & \mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x})\end{aligned}=\frac{2}{2} \int_{0}^{1} f(t) d t=\int_{0}^{1} f_{\text {max }} t d t=$ $f_{\max } / 2\left[t^{2}\right]_{0}^{1}=f_{\max } / 2$

What are the other "easy" terms?

$$
b_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) \sin (n \omega t) d t
$$

$$
b_{n}=\frac{2}{\tau}\left[\int_{-\tau / 2}^{0} f(t) \sin (n \omega t) d t+\int_{0}^{\tau / 2} f(t) \sin (n \omega t) d t\right]=0
$$

$$
f(x)=f(-x) \text { but } \sin (x)=-\sin (-x) \text { so the two integrals }
$$ have opposite sign and cancel

$$
\begin{gathered}
a_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) \cos (n \omega t) d t \\
a_{n}=\frac{4}{\tau} \int_{0}^{\tau / 2} f(t) \cos (n \omega t) d t \\
a_{n}=\frac{4}{2} \int_{0}^{1} f(t) \cos (n \omega t) d t=2 \int_{0}^{1} f_{\max } t \cos (n \omega t) d t \\
a_{n}=2 f_{\max } \int_{0}^{1} t \cos (n \omega t) d t
\end{gathered}
$$

Reminder of integration by parts...

$$
\begin{gathered}
\int u d v=u v-\int v d u \\
u=t, d u=d t, d v=\cos (n \omega t) d t, v=\frac{1}{n \omega} \sin (n \omega t)
\end{gathered}
$$

But remember,

 $\tau=2$, so $\omega=\pi$$$
a_{n}=2 f_{\max }\left(\left[\frac{t}{n \omega} \sin (n \omega t)\right]_{0}^{1}-\int_{0}^{1} \frac{1}{n \omega} \sin (n \omega t) d t\right)
$$

$$
a_{n}=2 f_{\max }\left[\frac{t}{n \omega} \sin (n \omega t)+\frac{1}{n^{2} \omega^{2}} \cos (n \omega t)\right]_{t=0}^{t=1}
$$

$$
a_{n}=2 f_{\max }\left(\frac{1}{n \omega} \sin (n \omega)+\frac{1}{n^{2} \omega^{2}} \cos (n \omega)-\frac{1}{n^{2} \omega^{2}}\right)
$$

And the non-trivial terms?

$$
\begin{gathered}
a_{n}=2 f_{\max }\left(\frac{1}{n \pi} \sin (n \pi)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right) \\
\sin (n \pi)=0
\end{gathered}
$$

$$
\cos (n \pi)=+1, \text { if } n \text { even }
$$

$$
\cos (n \pi)=-1, \text { if } \mathrm{n} \text { odd }
$$

$$
a_{n}=0, \text { if } \mathrm{n} \text { even }
$$

$\mathrm{f}(\mathrm{t})$

$$
a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}, \text { if } \mathrm{n} \text { odd }
$$

The answer

$$
\begin{gathered}
f(t)=f_{\max } / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right] \\
a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}} \text { for } \mathrm{n} \text { odd } \\
a_{n}=0 \text { for } \mathrm{n} \text { even }
\end{gathered}
$$

How well does it work?
$f(t)=f_{\text {max }} / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right]$
$a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}$ for n odd
$a_{n}=0$ for n even

Let's try this out! Set fmax = 1 for simplicity

Only a0 term

$f(t)=f_{\max } / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right]$
$a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}$ for n odd
$a_{n}=0$ for n even

Let's try this out! Set fmax = 1 for simplicity

Only a0,a1 terms

Not great, but can see this starting to work

$f(t)=f_{\text {max }} / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right]$
$a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}$ for n odd
$a_{n}=0$ for n even

Only a0, a1, a3 terms

Can see this now?

Let's try this out! Set fmax = 1 for simplicity

$f(t)=f_{\text {max }} / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right]$
$a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}$ for n odd $a_{n}=0$ for n even

Let's try this out! Set fmax = 1 for simplicity

Only a0,a1,a3,a5 terms

With only 4 terms doing quite well
$f(t)=f_{\max } / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi t)\right]$
$a_{n}=\frac{-4 f_{\max }}{n^{2} \pi^{2}}$ for n odd

$$
a_{n}=0 \text { for } \mathrm{n} \text { even }
$$

Let's try this out! Set fmax = 1 for simplicity

Only a0, a1, a3, a5, a7, a9, a11 terms

With only handful terms doing quite well

We know now that any periodic function $f(t)$ with period τ can be expressed as

$$
f(x)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \omega x)+b_{n} \sin (n \omega x)\right] \omega=2 \pi / \tau
$$

And we want to solve: $m \ddot{x}+b \dot{x}+k x=f(x)$
Let's start by assuming
we can break $\mathrm{f}(\mathrm{x})$ down $m \ddot{x}+b \dot{x}+k x=f_{1}(x)$ into $f_{1}(x)$ and $f_{2}(x)$, and
that we know the

$$
m \ddot{x}+b \dot{x}+k x=f_{2}(x)
$$ solutions x_{1} and x_{2} to:

$$
\begin{gathered}
m \ddot{x}_{1}+b \dot{x}_{1}+k x_{1}=f_{1}(x) \\
m \ddot{x}_{2}+b \dot{x}_{2}+k x_{2}=f_{2}(x) \\
x_{3}=x_{1}+x_{2} \\
k x_{3}=k x_{1}+k x_{2} \\
\dot{x_{3}}=\dot{x}_{1}+\dot{x}_{2} \\
\ddot{x}_{3}=\ddot{x}_{1}+\ddot{x}_{2}
\end{gathered}
$$

$$
m \ddot{x}_{3}+b \dot{x}_{3}+k x_{3}=m\left(\ddot{x}_{1}+\ddot{x}_{2}\right)+b\left(\dot{x}_{1}+\dot{x}_{2}\right)+k\left(x_{1}+x_{2}\right)
$$

$$
m \ddot{x}_{3}+b \dot{x}_{3}+k x_{3}=m \ddot{x}_{1}+b \dot{x}_{1}+k x_{1}+m \ddot{x}_{2}+b \dot{x}_{2}+k x_{2}
$$

$$
m \ddot{x}_{3}+b \dot{x}_{3}+k x_{3}=f_{1}(x)+f_{2}(x)=f(x)
$$

So if we can break up $f(x)$ into pieces for which we know the solution, we can solve any periodic driven oscillator

$$
\begin{array}{ll}
\text { So if } f(x)=\sum_{n=0}^{\infty} f_{n} \cos (n \omega x) \\
x(t)=\sum_{n=0}^{\infty} A_{n} \cos (n \omega t-\delta t) & \\
A_{n}=\frac{f_{n}}{\sqrt{\left(\omega_{0}^{2}-n^{2} \omega^{2}\right)^{2}+4 \beta^{2} n^{2} \omega^{2}}} & \\
\quad \begin{array}{c}
\mathrm{n}^{\text {th }} \text { Fourier } \\
\text { coefficient }
\end{array} \\
\tan \delta_{n}=\frac{2 \beta n \omega}{\omega_{0}^{2}-n^{2} \omega^{2}}
\end{array}
$$

Let's look at example 5.5 in Taylor together

And your homework, due in 1 week

5.2,5.10,5.11,5.26,5.43

Your midterm will be on this subject - let's discuss it now

