
137Oscillations

Begin our discussion of 
oscillations with Hooke’s 
Law in one dimension

F pxq “ ´kx

Upxq “ ´
ª
F pxqdx “ 1

2
kx

2

Upxq “ Up0q ` U

1p0qx ` 1

2
U

2p0qx2 ` 1

6
U

3p0qx3 ` ...

As Taylor (the author) points out, this is the 
expected form. Taylor (the mathematician!) 

expanding about an equilibrium point ...



138Mr. Robert Hooke

Wikipedia:
“An artist's impression of 
Robert Hooke. No 
authenticated contemporary 
likenesses of Hooke 
survive.”



139What does Newton say to Hooke (1D)?

F “ ma “ m:x “ ´kx Ñ :x “ ´!

2
x

! “
a
k{m

As always, try exponential functions

2nd order 
differential eqn, 
this is second 
solution

:x “ d

2
x

dt

2
“ ´!

2
x

xptq “ Ae

Bt
, 9x “ ABe

Bt
, :x “ AB

2
e

Bt “ B

2
x

B

2
x “ ´!

2
x

B “ i!

xptq “ x0e
i!t

xptq “ x0e
´i!t



140Briefly going back to Sec 2.5-2.6

n is
integer

Odd powers of i are imaginary, even powers are 
real, alternating between positive and negative

ez “
q“8ÿ

q“0

zq

q!
“ 1 ` z ` z2

2!
` z3

3!
` ...

ei✓ “
q“8ÿ

q“0

pi✓qq
q!

“ 1 ` i✓ ` pi✓q2
2!

` pi✓q3
3!

` pi✓q4
4!

` ...

i0 “ 1, i1 “ i, i2 “ ´1, i3 “ i2 ¨ i “ ´i, i4 “ i2 ¨ i2 “ 1

i0`4n “ i0i4n “ i4n “ pi4qn “ 1n “ 1

i1`4n “ i1i4n “ i ¨ i4n “ ipi4qn “ i1n “ i

i2`4n “ i2i4n “ ´14n “ ´pi4qn “ ´1 ¨ 1n “ ´1

i3`4n “ i3i4n “ ´i4n “ ´i ¨ pi4qn “ ´i ¨ 1n “ ´i



141Briefly going back to Sec 2.5-2.6

Can work out Taylor expansion for cosine 
and sine (see problem 2.18)

⌘ptq “ Ae!t

A “ aei� Ñ
⌘ptq “ aei�e!t “ aei�`!t

A complex
a,! real

ei✓ “
q“8ÿ

q“0

pi✓qq
q!

“ 1 ` i✓ ` pi✓q2
2!

` pi✓q3
3!

` pi✓q4
4!

` ...

ei✓ “
„
1 ´ ✓2

2!

` ✓4

4!

´ ...

⇢
` i

„
✓ ´ ✓3

3!

` ✓5

5!

´ ...

⇢

ei✓ “ cos ✓ ` i sin ✓



142Electric particle moving in constant B field

Particle with electric 
charge q moving in 
magnetic field. Let’s 
align the magnetic field 
along the z-direction,

F “ qv
°

B “ m 9v

m 9v
x

“ qBv
y

m 9v
y

“ ´qBv
x

m 9v
z

“ 0 Ñ v
z

“ const

B “ Bẑ

! “ qB

m
9v
x

“ !v
y

9v
y

“ ´!v
x

⌘ “ v
x

` iv
y

9⌘ “ 9v
x

` i 9v
y

“ !v
y

´ i!v
x

9⌘ “ ´i!⌘

This we know
how to solve!

Coupled 
equations!



143Electric particle moving in constant B field

xptq „ cosp!t ` �q
yptq „ sinp!t ` �q
zptq “ z0 ` vzt

Particle moves in 
a helix in x-y 
direction

z

Frequency 
~1/m !!!

9⌘ “ ´i!⌘

⌘ptq “ Ae

´i!t “ 9xptq ` i 9yptq
9vz “ const Ñ zptq “ z0 ` vzt

⇠ptq “ xptq ` iyptq “
ª
⌘ptqdt “

ª
Ae

´i!t
dt

q “ ´i!t, dq “ ´i!dt, dt “ dq{p´i!q
i

´1 “ 1 ¨ i´1 “ i

4 ¨ i´1 “ i

3 “ ´i

dt “ idq{!

⇠ptq “ iA

!

ª
e

q
dq “ iA

!

e

´i!t ` constant

xptq ` iyptq “ iA

!

e

´i!t

xp0q ` iyp0q “ iA

!

xptq ` iyptq “ rxp0q ` iyp0qs e´i!t



144Now back to Hooke + Newton

F “ ma “ m:x “ ´kx Ñ :x “ ´!

2
x

! “
a
k{m

xptq “ Ae

i!t ` Be

´i!t

xptq “ A rcosp!tq ` i sinp!tqs ` B rcosp´!tq ` i sinp´!tqs
xptq “ A rcosp!tq ` i sinp!tqs ` B rcosp!tq ´ i sinp!tqs

xptq “ pA ` Bq cosp!tq ` ipA ´ Bq sinp!tq
xptq “ C1 cosp!tq ` C2 sinp!tq, with C1 “ pA ` Bq, C2 “ ipA ´ Bq



145Alternate forms of solution

xptq “ C1 cosp!tq ` C2 sinp!tq, with C1 “ pA ` Bq, C2 “ ipA ´ Bq

D “
b
C

2
1 ` C

2
2

xptq “ D

„
C1

D

cosp!tq ` C2

D

sinp!tq
⇢

xptq “ D rcos� cosp!tq ` sin � sinp!tqs
xptq “ D cosp!t ´ �q

C1

C2
D

!

C1 “ D cos �

C2 “ D sin �

cosY cosZ ` sinY sinZ “ cospY ´ Zq



146Yet other alternate forms of solution

xptq “ Ae

i!t ` Be

´i!t

xptq “ C1 cosp!tq ` C2 sinp!tq, with C1 “ pA ` Bq, C2 “ ipA ´ Bq

Ñ A “ 1

2

pC1 ´ iC2q, B “ 1

2

pC1 ` iC2q
Ñ B “ A

˚
, with z

˚ “ x ´ iy if z “ x ` iy

xptq “ Ae

i!t ` A

˚
e

´i!t “ 2 ¨ Real part of
“
Ae

i!t
‰

Same solution, but 
good to get 

comfortable with 
all these forms!

Obvious 
why?



147Total energy of harmonic oscillator

xptq “ A cosp!t ´ �q
x

2ptq “ A

2
cos

2p!t ´ �q
9xptq “ ´A! sinp!t ´ �q

9x2ptq “ A

2
!

2
sin

2p!t ´ �q

U “ 1

2

kx

2 “ k

2

A

2
cos

2p!t ´ �q

T “ 1

2

mv

2 “ m

2

A

2
!

2
sin

2p!t ´ �q
!

2 “ k{m Ñ

E “ U ` T “ k

2

A

2
cos

2p!t ´ �q ` k

2

A

2
sin

2p!t ´ �q

E “ kA

2

2

“
cos

2p!t ´ �q ` sin

2p!t ´ �q
‰

“ kA

2{2

Total E does not 
depend on time (as 
expected!)



148Some problems

Problem 5.9 in small groups or by 
yourself, then
Problem 5.3 together
Then Problem 5.1 in small groups 
again or by yourself



149What about oscillators in >1 dimension?

F “ ´kr,!2 “ k{m
:x “ ´!

2
x

:y “ ´!

2
y

xptq “ A

x

cosp!tq
yptq “ A

y

cosp!t ´ �q

How does 2d-motion 
change depending 
on the phase?

Let’s plot solutions 
where Ax or Ay = 0, 
and where they are 
not zero, and with 
various phrases 
(think about what the 
phases mean)



150What if restoring force is not equal in both directions?

How does 2d-motion 
change depending 
on the two restoring 
forces (ie the 
relationship between 
the ω)? Easier to plot 
in 1 dimension on top 
of each other first

F

x

“ ´k

x

x,!

2
x

“ k

x

{m
F

y

“ ´k

y

y,!

2
y

“ k

y

{m
:x “ ´!

2
x

x

:y “ ´!

2
y

y

xptq “ A

x

cosp!
x

tq
yptq “ A

y

cosp!
y

t ´ �q



151Damped oscillations (back to 1D)

m:x ` b 9x ` kx “ 0

ma from 
Newton

-bv damping 
force

-kx from 
Hooke’s Law

Note the assumption of linear damping 
force to make problem much simpler



152Damped oscillations (a comparison)

m:x ` b 9x ` kx “ 0

L:q ` R 9q ` 1

C
q “ 0



153Back to our classical mechanics problem

m:x ` b 9x ` kx “ 0

m:x ` b 9x ` kx “ 0

:x ` pb{mq 9x ` pk{mqx “ 0

b

m

“ 2�

!

2
0 “ k

m

:x ` 2� 9x ` !

2
0x “ 0

As is very often 
the case, let’s see 
if an exponential 
solution solves 
this differential 
equation



154Back to our classical mechanics problem

:x ` 2� 9x ` !

2
0x “ 0

xptq “ Ae

rt

9x “ Are

rt “ rx

:x “ Ar

2
e

rt “ r

2
x

r

2
x ` 2�rx ` !

2
0x “ 0

r

2 ` 2�r ` !

2
0 “ 0

Guess at exponential



155Back to our classical mechanics problem

:x ` 2� 9x ` !

2
0x “ 0

r

2 ` 2�r ` !

2
0 “ 0

r “ ´2� ˘
a
4�2 ´ 4!2

0

2

r “ ´� ˘
b
�

2 ´ !

2
0

xptq “ Ae

rt

xptq “ C1e

´
´�`

?
�2´!2

0

¯
t ` C2e

´
´�´

?
�2´!2

0

¯
t

xptq “ e

´�t
´
C1e

?
�2´!2

0t ` C2e
´

?
�2´!2

0t
¯



156How to interpret this?

xptq “ e

´�t
´
C1e

?
�2´!2

0t ` C2e
´

?
�2´!2

0t
¯

As always, let’s check ranges/extremes 
for the new variables we’ve introduced. 

No damping means "=0, so

xptq “ C1e

?
´!2

0t ` C2e
´

?
´!2

0t

xptq “ C1e
i!0t ` C2e

´i!0t

Get back (as expected) undamped 
harmonic oscillator we previously studied



157Now let’s allow (small) damping

xptq “ e

´�t
´
C1e

?
�2´!2

0t ` C2e
´

?
�2´!2

0t
¯

if � † !0,�
2 ´ !

2
0 † 0,

b
�

2 ´ !

2
0 “ i!1

!1 “
b
!

2
0 ´ �

2

xptq “ e

´�t
`
C1e

i!1t ` C2e
´i!1t

˘

xptq “ e

´�t
cosp!1t ´ �q

x(t) is the product of two terms. What does 
this product look like? Let’s plot this...

But what happens as we increase damping 
(ie increase ")?



158Now let’s allow (very large) damping

Both exponentials are real: no oscillations 
when we have overdamping. Let’s also 

plot this

xptq “ e

´�t
´
C1e

?
�2´!2

0t ` C2e
´

?
�2´!2

0t
¯

if � ° !0,�
2 ´ !

2
0 ° 0



159One special case

We only have one 
solution now! What’s 

the second one? Taylor 
give the answer (a 

good guess)

xptq “ e

´�t
´
C1e

?
�2´!2

0t ` C2e
´

?
�2´!2

0t
¯

if � “ !0...

xptq “ e

´�t

xptq “ ´te

´�t

9x “ d

dt

p´te

´�tq
9x “ ´e

´�t ` t�e

´�t

:x “ d

dt

p´e

´�t ` t�e

´�tq
:x “ �e

´�t ` �e

´�t ´ t�

2
e

´�t

:x “ 2�e´�t ´ t�

2
e

´�t



160Critical damping

xptq “ ´te

´�t

9x “ ´e

´�t ` t�e

´�t

:x “ 2�e´�t ´ t�

2
e

´�t

:x ` 2� 9x ` !

2
0x “ 0

2�e´�t ´ t�

2
e

´�t ` 2�p´e

´�t ` t�e

´�tq ` !

2
0p´te

´�tq “ 0

2� ´ t�

2 ´ 2� ` 2t�2 ´ t!

2
0 “ 0

tp�2 ´ !

2
0q “ 0 But � “ !0

xptq “ C1e
´�t ` C2te

´�t

So general solution for critical damped case is 



161Some problems

Let’s work on problems 5.20, 5.23, then you work 
on 5.28



162Damping oscillations

In what cases do we want to most quickly 
dampen oscillations?



163My favorite case (though not the most important one)



164Driven damped oscillations (a comparison)

m:x ` b 9x ` kx “ F ptq
L:q ` R 9q ` 1

C
q “ Eptq

fptq “ F ptq{m
:x ` 2� 9x ` !

2
0x “ fptq



165How about when we force oscillations?



166Let’s look at sinusoidal driving forces

:x ` 2� 9x ` !

2
0x “ f0 cosp!tq

Can use 
exponentials 
too (see Taylor)

cospA ´ Bq “ cospAq cospBq ` sinpAq sinpBq
sinpA ´ Bq “ sinpAq cospBq ´ cospAq sinpBq

Useful generic identities:



167Plugging it in

´C!2
cosp!t ´ �q ´ 2C�! sinp!t ´ �q ` !2

0C cosp!t ´ �q “ f0 cosp!tq
´C!2 rcosp!tq cos � ` sinp!tq sin �s ´ 2C�! rsinp!tq cos � ´ cosp!tq sin �s

` !2
0C rcosp!tq cos � ` sinp!tq sin �s “ f0 cosp!tq

For this to be true always, sinp!tq and cosp!tq terms must always balance:

C cosp!tq
“
p!2

0 ´ !2q cos � ` 2�! sin � ´ f0{C
‰

“ 0

C sinp!tq
“
p!2

0 ´ !2q sin � ´ 2�! cos �
‰

“ 0



168Plugging it in

A useful identity:

C cosp!tq
“
p!2

0 ´ !2q cos � ` 2�! sin � ´ f0{C
‰

“ 0

C sinp!tq
“
p!2

0 ´ !2q sin � ´ 2�! cos �
‰

“ 0

sin �

cos �
“ 2�!

!2
0 ´ !2

tan � “ 2�!

!2
0 ´ !2

p!2
0 ´ !2q cos � ` 2�!

ˆ
2�! cos �

!2
0 ´ !2

˙
“ f0{C

cospqq “ 1{
b
tan

2pqq ` 1 Ñ
!2
0 ´ !2

a
1 ` 4�2!2{pw2

0 ´ !2q2
` 2�!

˜
2�!

!2
0 ´ !2

1a
1 ` 4�2!2{pw2

0 ´ !2q2

¸
“ f0{C

p!2
0 ´ !2q2 ` 4�2!2

a
p!2

0 ´ !2q2 ` 4�2!2
“ f0{C

b
p!2

0 ´ !2q2 ` 4�2!2 “ f0{C

C “ f0a
p!2

0 ´ !2q2 ` 4�2!2



169Phew!

xptq “ C cosp!t ´ �q

tan � “ 2�!

!

2
0 ´ !

2

C “ f0a
p!2

0 ´ !

2q2 ` 4�

2
!

2

Let’s examine some of the behavior of this 
solution. What happens when damping is small? 

What do we mean by a resonance?



170Some examples of resonances



171Some examples of resonances



172Some examples of resonances

How to most efficiently transfer to
and store mechanical energy in 
the oscillator



173Where do we get a resonance?

C “ f0a
p!2

0 ´ !2q2 ` 4�2!2

C maximum when

“
p!2

0 ´ !2q2 ` 4�2!2
‰
is a minimum

!max

0 “ !

!max “ !2 “
b
!2
0 ´ 2�2

Fixed ω
Fixed ω0



174A nice summary from Taylor

!0 “
a
k{m “ natural frequency of undamped oscillator

!1 “
b
!2
0 ´ �2 “ frequency of damped oscillator

! “ frequency of driving force

!2 “
b
!2
0 ´ 2�2 “ value of ! at which response is maximum



175Quality factor

Let’s work out Problem 5.41 together



176From Problem 5.41

Full width at half maximum = FWHM „ 2�

Quality factor Q “ w0

2�



177A word on transient solutions

We know the above is a solution to the undriven 
oscillator:

m:x ` b 9x ` kx “ 0

xtrptq “ e

´�t
´
C

1
tre

?
�2´!2

0t ` C

2
tre

´
?

�2´!2
0t

¯

If we add xtr(t) to our nominal solution to the 
forced oscillator, we get back a new solution to 
the forced oscillator (since by definition in the 

differential equation is == 0)

The full solution is cos(ωt-δ)+the above transients 
(which die out over time and often are ignored)



178Now slightly switching topics again



179Fourier series...

fpt ` ⌧q “ fptq

What does it mean for a function f to be periodic 
(with period #)?

f(t) #

t



180What about trigonometric functions?

cos(2πt/#), sin (2πt/#), cos(4πt/#), sin (6πt/#) have 
period #, as do all:

cospn!tq, sinpn!tq
! “ 2⇡{⌧

n is integer

fptq “
8ÿ

n“0

ran cospn!tq ` bn sinpn!tqs
And also this:



181What Fourier tells us...

fptq “
8ÿ

n“0

ran cospn!tq ` bn sinpn!tqs
Any periodic function f(t) with period # can be 
expressed as 

In other words, any 
periodic function can be 
built up from an infinite 
series of cos and sin terms

We will study this because we now know how to 
solve problem of damped oscillators with 

sinusoidal driving forces. Also because Fourier 
series are incredibly useful in engineering, other 
areas of physics, information processing, etc...



182Fourier decomposition coefficients

n>0

n>0

fptq “
8ÿ

n“0

ran cospn!tq ` bn sinpn!tqs

an “ 2

⌧

ª ⌧{2

´⌧{2
fptq cospn!tqdt

bn “ 2

⌧

ª ⌧{2

´⌧{2
fptq sinpn!tqdt

a0 “ 1

⌧

ª ⌧{2

´⌧{2
fptqdt

b0 “ 0

Want proof?
See problems 
5.46-5.48



183How to use?

Let’s evaluate Fourier coefficients for our 
example from before (Problem 5.49):

f(t)
#=2

t0-1 1 2 3

fmax



184The constant term

f(t)
#=2

t0-1 1 2 3

fmax

a0 “ 1

⌧

ª
⌧{2

´⌧{2
fptqdt “ 1

2

ª 1

´1
fptqdt “

“ 2

2

ª 1

0
fptqdt “

ª 1

0
f
max

tdt “

f
max

{2rt2s10 “ f
max

{2

Because 
f(x) = f(-x)



185What are the other “easy” terms?

f(t)
#=2

t0-1 1 2 3

fmax

f(x) = f(-x) but sin(x) = -sin(-x) so the two integrals 
have opposite sign and cancel

bn “ 2

⌧

ª ⌧{2

´⌧{2
fptq sinpn!tqdt

bn “ 2

⌧

«ª 0

´⌧{2
fptq sinpn!tqdt `

ª ⌧{2

0
fptq sinpn!tqdt

�
“ 0



186And the non-trivial terms?

a
n

“ 2

⌧

ª
⌧{2

´⌧{2
fptq cospn!tqdt

a
n

“ 4

⌧

ª
⌧{2

0
fptq cospn!tqdt

a
n

“ 4

2

ª 1

0
fptq cospn!tqdt “ 2

ª 1

0
f
max

t cospn!tqdt

a
n

“ 2f
max

ª 1

0
t cospn!tqdt

Reminder of integration by parts...

ª
udv “ uv ´

ª
vdu

u “ t, du “ dt, dv “ cospn!tqdt, v “ 1

n!
sinpn!tq

a
n

“ 2f
max

˜„
t

n!
sinpn!tq

⇢1

0

´
ª 1

0

1

n!
sinpn!tqdt

¸

a
n

“ 2f
max

„
t

n!
sinpn!tq ` 1

n2!2
cospn!tq

⇢
t“1

t“0

a
n

“ 2f
max

ˆ
1

n!
sinpn!q ` 1

n2!2
cospn!q ´ 1

n2!2

˙

But remember, 
# = 2, so ω=π



187And the non-trivial terms?

f(t)
#=2

t0-1 1 2 3

fmax

a
n

“ 2f
max

ˆ
1

n⇡
sinpn⇡q ` 1

n2⇡2
cospn⇡q ´ 1

n2⇡2

˙

sinpn⇡q “ 0

cospn⇡q “ `1, if n even

cospn⇡q “ ´1, if n odd

a
n

“ 0, if n even

a
n

“ ´4f
max

n2⇡2
, if n odd



188The answer

f(t)
#=2

t0-1 1 2 3

fmax

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even



189How well does it work?

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even

Let’s try this out! 
Set fmax = 1 for 
simplicity

t
-1 0 1 2 3 4 5

f(t
)

0

0.2

0.4

0.6

0.8

1
Only a0 term

Obviously
not enough



t
-1 0 1 2 3 4 5

f(t
)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Only a0,a1 terms

190How well does it work?

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even

Let’s try this out! 
Set fmax = 1 for 
simplicity

Not great, but 
can see this 
starting to work



t
-1 0 1 2 3 4 5

f(t
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Only a0,a1,a3 terms

191How well does it work?

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even

Let’s try this out! 
Set fmax = 1 for 
simplicity

Can see this 
now?
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Only a0,a1,a3,a5 terms

192How well does it work?

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even

Let’s try this out! 
Set fmax = 1 for 
simplicity

With only 4 
terms doing 
quite well



t
-1 0 1 2 3 4 5

f(t
)

0

0.2

0.4
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0.8

1
Only a0,a1,a3,a5,a7,a9,a11 terms

193How well does it work?

fptq “ f
max

{2 `
8ÿ

n“1

ra
n

cospn⇡tqs

a
n

“ ´4f
max

n2⇡2
for n odd

a
n

“ 0 for n even

Let’s try this out! 
Set fmax = 1 for 
simplicity

With only 
handful terms 
doing quite well



194How will we use this for driven oscillators?

We know now that any periodic function f(t) with 
period # can be expressed as 

! “ 2⇡{⌧
fpxq “

8ÿ

n“0

ran cospn!xq ` bn sinpn!xqs

m:x ` b 9x ` kx “ fpxqAnd we want to solve:

Let’s start by assuming 
we can break f(x) down 
into f1(x) and f2(x), and 

that we know the 
solutions x1 and x2 to:

m:x ` b 9x ` kx “ f1pxq
m:x ` b 9x ` kx “ f2pxq



195How will we use this for driven oscillators?

So if we can break up f(x) into pieces for which we 
know the solution, we can solve any periodic 

driven oscillator

m:x1 ` b 9x1 ` kx1 “ f1pxq
m:x2 ` b 9x2 ` kx2 “ f2pxq

x3 “ x1 ` x2

kx3 “ kx1 ` kx2

9x3 “ 9x1 ` 9x2

:x3 “ :x1 ` :x2

m:x3 ` b 9x3 ` kx3 “ mp:x1 ` :x2q ` bp 9x1 ` 9x2q ` kpx1 ` x2q
m:x3 ` b 9x3 ` kx3 “ m:x1 ` b 9x1 ` kx1 ` m:x2 ` b 9x2 ` kx2

m:x3 ` b 9x3 ` kx3 “ f1pxq ` f2pxq “ fpxq



196How will we use this for driven oscillators?

So if fpxq “
8ÿ

n“0

fn cospn!xq

xptq “
8ÿ

n“0

An cospn!t ´ �tq

An “ fna
p!2

0 ´ n

2
!

2q2 ` 4�

2
n

2
!

2

tan �n “ 2�n!

!

2
0 ´ n

2
!

2

nth Fourier 
coefficient



197Let’s look at example 5.5 in Taylor together

How to most efficiently push 
a child on a swing



198And your homework, due in 1 week

5.2,5.10,5.11,5.26,5.43



199Midterm, due in 1.5 weeks

Your midterm will be on this subject - let’s 
discuss it now


