Oscillations

Begin our discussion of
oscillations with Hooke’s
Law In one dimension

Original X=0
o &
AX
F(z) = —kx
1
Ux) = —fF(:c)da: = —ka?
2 } New X=0

As Taylor (the author) points out, this is the
expected form. Taylor (the mathematician!)
expanding about an equilibrium point ...

Ulz) = U(0) + U (0)z + %U”(O):UQ + %U’”(O)az?’ ...
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Robert Hooke
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Wikipedia:

“An artist's impression of
Robert Hooke. No
authenticated contemporary
likenesses of Hooke
survive.”



What does Newton say to Hooke (1D)?

F=ma=mi=—kr -1 =—wx

k/m

As always, try exponential functions

. d’z 5
xr = ol —Ww T
r(t) = AePt & = ABeP! i = AB?eP! = Bz
B?r = —w2:13
B = 2nd order

iwt / differential eqn,
x(t) = xpe

_Z‘wt/thls IS second
x(t) = xge

solution



Briefly going back to Sec 2.5-2.6

24 22 29

z _ — - -
e” = /! 1+z+2!+3!+...

(10)*  (i0)°  (i6)*
/ ST TR

+ ...

N iS -04+4n _ 0:4n __ -4n (24)72 — 1™ =1

integer  ji+4n _ j14n _ o cdn _ i(iH)" = 41" = g
j2+4n _ ;204n _ _ q4n _ _(7;4)"% — 1.1 = —1
j3+dn _ 3.4n __ oAn o (Z'4)n — 5. 1" = —4

Odd powers of | are imaginary, even powers are
real, alternating between positive and negative



Briefly going back to Sec 2.5-2.6

o LTy @O0 G

+ + ...
= q! 21 3! 4!
- 0% g4 03  @°
10 s o . 0 o
e’ = [1 o -+ I ] + 12 [(9 3] + q }
e’ = cos@ + isin 6

Can work out Taylor expansion for cosine
and sine (see problem 2.18)

A complex
a,o real



Electric particle moving in constant B field

Particle with electric

F=qv XB=mv charge g moving in
mu, = qBv, magnetic field. Let’s
mu, = —qBv, align the magnetic field
mu, =0 — v, = const  along the z-direction,

B = Bz

qbB

W = ——

™m

vz = wvy — Coupled
vy = —wv, 1 equations!
This we know N = Uy + iUy
how to solve!l  j — 4 + 44, = wo, — iwu,

\ N = —lWwn




Electric particle moving in constant B field
7 = —iwn z(t) ~ cos(wt + 6)
n(t) = Ae™"™" = x(t) + iy(?) y(t) N Sin(wt 5)

v, = const — z(t) = zg + v,t
E(t) = x(t) +iy(t) = Jn(t)dt = JAe_i“"tdt Z(t) = 20 + Ut
q = —iwt,dq = —iwdt, dt = dg/(—iw)  Particle moves in

iTl=1-i =t =B = a helix in x-y
dt = idg/w direction Vagnetic
E(t) = i4 Jeqdq = %G_M + constant, ra e
W W Z
. . ZA 1wt
x(t) + iy(t) = e




Now back to Hooke + Newton

F=ma=mi=—kx —7F=—wx
w=k/m

&£ R

Ik T

r(t) = Ae"™! 4+ Be"?
x(t) = Alcos(wt) + isin(wt)]| + B |cos(—wt) + isin(—wt)]
x(t) = A|cos(wt) + ¢sin(wt)| + B |[cos(wt) — ¢sin(wt)]
z(t) = (A + B)cos(wt) + i(A — B) sin(wt)
x(t) = Cp cos(wt) + Cy sin(wt), with C; = (A+ B),Cy = i(A — B)



Alternate forms of solution

z(t) = Cq cos(wt) + Cosin(wt), with C; = (A+ B),Cy =i(A— B)

D =,/C?+C3

#(t) = D [% cos(wt) + % Sin(wt)]

x(t) = D |cosd cos(wt) + sin d sin(wt)]
x(t) = D cos(wt — 9)

D C1 = Dcoso
Co2 C5 = Dsind
S cosY cos Z +sinY sin Z = cos(Y — 2)




Yet other alternate forms of solution

Same solution, but
good to get
comfortable with
all these forms!
r(t) = Ae™' + Be ™!
z(t) = Cq cos(wt) + Cysin(wt), with C1 = (A+ B),Cy = i(A — B)

1

1
— A = 5(01—2.02),3— (Cl—I—ZCQ)

— B =A% withz* =z —iyif 2z =2+ iy
z(t) = Ae™" + A*e "' = 2. Real part of [ Ae™"]

\ Obvious

why?



Total energy of harmonic oscillator

& L
(T @m@ @MM 5(t) — Acos(wt — 5)
z(t) = A? cos®(wt — J)
d i

z(t) = —Awsin(wt — )
i (t) = A%w?sin®(wt — )
1 k
Total E does not U = Ska’® = 5 A® cos”(wt — 9)
depend on time (as . _ %WQ _ %A%Q sin?(wi — )
expected!)

w? = k/m —
koo 2 koo o
E=U+T=§A cos (wt—5)+§A sin“(wt — 9)

kA 2 . 2 2
E = - |cos? (wt — &) + sin®(wt — 6) | = kA®/2



Some problems

Problem 5.9 in small groups or by
yourself, then

Problem 5.3 together

Then Problem 5.1 in small groups
again or by yourself



What about oscillators in >1 dimension?

F = —kr,w® =k/m

b= —wy

i =—wy
x(t) = Az cos(wt)
y(t) = A, cos(wt — 6)

How does 2d-motion
change depending
on the phase?

Let’s plot solutions
where Ax or Ay = 0,
and where they are
not zero, and with
various phrases
(think about what the
phases mean)



What if restoring force is not equal in both directions?

Fp = —kpw,w; = ky/m How does 2d-motion
F, = _kyy,wz = k,/m change depending
on the two restoring
forces (ie the

Y relationship between
£) the w)? Easier to plot

In 1 dimension on top
y(t) = Aycos(wyl —9)  of each other first



Damped oscillations (back to 1D)

mx + bx + kx = 0

? T
-bv damping
force

ma from -kx from
Newton Hooke's Law

Note the assumption of linear damping
force to make problem much simpler



Damped oscillations (a comparison)

mx + bx

Lq + Rq -

R
—— W ———

> iy

Vb

R

kax
1
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{ .
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‘ .
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]
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€000 0mr 4o0 4m0 ve 00 090 196 150 454 124 4°

.......................................................

{
¢ @ voltage source !

0

0



Back to our classical mechanics problem

mx + bx + kx = 0

mi + bs + kz =0 As is very often

T+ (b/m)z+ (k/m)x =0  the case, let's see

b 25 If an exponential

m solution solves

w2 = k this differential
m equation



Back to our classical mechanics problem

i+ 260 + ng _ 0 Guess at exponential
x(t) = Aer“/
T = Are’" = rx
T = Arfe™ = riyg
réx + 2Brr + w%x =0
r? + 281 + wi =0



Back to our classical mechanics problem

T+ 281 +wixr =0
r2+25r+w820
—283 + 1/48% — 4w?
’r’:

2
r= /B -
r(t) = Ae™

r(t) = C1€<_5+\/52_w8>t + 026(_5_\/52_w%)t
z(t) = e Pt (C’le\/ﬁz_wgt + 026—\/52—w8t)




How to interpret this?

z(t) = e Pt (cleWQ—w%t L OV wBt )

As always, let's check ranges/extremes
for the new variables we’ve introduced.

No damping means (=0, so
2(t) = CreV ™90t 4 Che™V 0ot
CIZ(t) = Cleiwot + Cge_iwot

Get back (as expected) undamped
harmonic oscillator we previously studied



Now let’s allow (small) damping

r(t) = e Pt (Cle\’ B2-wit 4 Ohe™V BQ_“’gt)

X(t) is the product of two terms. What does
this product look like? Let’s plot this...
But what happens as we increase damping

(le increase f)?



Now let’'s allow (very large) damping

r(t) = e P! (C’lev B2=wit 4 Che™V 52_w3t>
if 3 >w0,62—w8 > ()
Both exponentials are real: no oscillations

when we have overdamping. Let's also
plot this



One special case

Zlf(t) — o Pt (Cle\/Wt 4 C2G—Mt)

if 6 — Wo-.-..
x(t) = e Pt
We only have one z(t) = —te 7!
solution now! What's /m = i(—te_ﬂt)
the second one? Taylor dt
give the answer (a i=—e Pt +tBe Pt
good guess) i = LBt 4 1Bt



Critical damping

x(t) = —te Pt
i = —e Pt 4 tBe P
T = 256_575 — tﬁZG_Bt
i+ 287 + wiz =0
2Be Pt —tB3%e Pt £ 28(—e Pt +tBePt) + wi(—te Pt) = 0
28 —tB% — 2B 4+ 2B —twi =0
t(6* —wg) =0  But 8 =wo

So general solution for critical damped case is
ZC(t) = Cle_ﬁt + Cgt(i_ﬁt



Some problems

Let's work on problems 5.20, 5.23, then you work
on 5.28



Damping oscillations

In what cases do we want to most quickly
dampen oscillations?



My favorite case (though not the most important one)




Driven damped oscillations (a comparison)

mx + bx + kx = F(t)

éq=5(t)

F(t) = F(t)/m
T+ 2B% + wix = f(t)

Lq + Rq A




How about when we force oscillations?




Let’s look at sinusoidal driving forces

T+ 2B% + wix = fo cos(wt)

T+ 2B% + wizr = fycos(wt)

Guess a cosine with the same frequency

Can use x = C cos(wt — §)
exponentials 7 = —Cwsin(wt — §)
too (see Taylor) ; — _cw? cos(wt — 6)

—Cw? cos(wt — 6) — 2CBwsin(wt — 6) + wiC cos(wt — &) = fo cos(wt)

Useful generic identities:
cos(A — B) = cos(A) cos(B) + sin(A) sin(B)
sin(A — B) = sin(A) cos(B) — cos(A) sin(B)



Plugging it in

—Cw? cos(wt — 6) — 2C Bwsin(wt — §) + wiC cos(wt — §) = fo cos(wt)
—Cw? [cos(wt) cos § + sin(wt) sin 6] — 2C Bw [sin(wt) cos § — cos(wt) sin 6]
+ w5 C [cos(wt) cos § + sin(wt) sin é] = fo cos(wt)
For this to be true always, sin(wt) and cos(wt) terms must always balance:
C cos(wt) [(w§ — w?) cosd + 2Bwsind — fo/C| =0
Csin(wt) [(wg — w?) sind — 26w cos §| = 0



Plugging it in

C cos(wt) [(wg — w?) cosd + 2Bwsind — fo/C] =0
Csin(wt) [(wg — w?)sind — 26w cos §] = 0

Sin5_ 28w

cosd Wi — w?
20w

tand = 25 5

2 0
(wi — w?) cos § + 2Pw ( wi_C(Z; ) — fo/C
0

A useful identity: cos(q) = 1/4/tan(g) +1

2

2

2Pw 1
(w0? = w2)2> = fo/C

i + 28w
V1 + 48702/ (wf — w?)? Wi —w? \/1 + 452w2]

(Wi — w?)® +48%°
\/(W(Q) —Cd2)2 i 462(02 - fO/C
\/ (wg —w?)? +46%w? = fo/C

fo
V(Wf —w?)? + 45%?

O —




x(t) = C cos(wt — 9)
20w

tan o =

2 _ 2
Wi — W

Jo
V(wE — w?)? + 43202

( =

Let’'s examine some of the behavior of this
solution. What happens when damping is small?
What do we mean by a resonance?



Some examples of resonances




Some examples of resonances
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Some examples of resonances




Where do we get a resonance?

_ Jo
V(wE — w?)? + 48202

C maximum when [(w§ —w?)? + 48°w?| is a minimum

max

Fixedw wy ™™ =w

Fixed Wo  wme® = wy = y/w? — 262




A nice summary from Taylor

wo = v/ k/m = natural frequency of undamped oscillator

w1 = \/ wg — 2 = frequency of damped oscillator

w = frequency of driving force

Wy = \/ wg — 232 = value of w at which response is maximum



Quality factor

Let’'s work out Problem 5.41 together



From Problem 5.41

Full width at half maximum = FWHM ~ 23

: Wo
lity fact = —
Quality factor () 25



A word on transient solutions

T (t) = e Pt (Ctlre\/BQ_wgt + C’fre_\/BQ_“gt>

We know the above Is a solution to the undriven
oscillator:

mx + bx + kx = 0

If we add xt(t) to our nominal solution to the
forced oscillator, we get back a new solution to
the forced oscillator (since by definition in the
differential equation is == 0)

The full solution is cos(wt-0)+the above transients
(which die out over time and often are ignored)



Now slightly switching topics again




Fourier series...

What does it mean for a function f to be periodic
(with period 1)?

ft+7) = f(t)

f(t) T




What about trigonometric functions?

cos(2trt/t), sin (211t/7), cos(4Trt/7), sin (6TTt/7) have
period 7, as do all:

nis integer cos(nwt), sin(nwt)

w=2m/T

_ And also this:
f(t) = > [an cos(nwt) + by, sin(nwt)]

n=0



What Fourier tells us...

Any periodic function f(t) with period = can be
Q0

expressed as f(t) = Z lay, cos(nwt) + by, sin(nwt) ]
n=0
In other words, any
periodic function can be
built up from an infinite
series of cos and sin terms

We will study this because we now know how to
solve problem of damped oscillators with
sinusoidal driving forces. Also because Fourier
series are incredibly useful in engineering, other
areas of physics, information processing, etc...



Fourier decomposition coefficients

f(t) = > [an cos(nwt) + by, sin(nwt)]

T/2
2 J f(t) cos(nwt)dt n>0

T —7/2

Uy,

2 ’7'/2
b, —f f(t) sin(nwt)dt n>0

T —7/2

1 7'/2
ag = —J f(&)dt \want proof?

T —T
/2 See problems
bo =0 5.46-5.48



How to use?

Let’'s evaluate Fourier coefficients for our
example from before (Problem 5.49):




The constant term

f(t)

fm ax

J IR

Because f F(t)dt _J fobdt —
fma:L'/Q[t2 0 T fma:z:/Q



What are the other “easy” terms?

T/2
by, = —J f(t) sin(nwt)dt

T —7/2

0 T/2 |
f f(t) sin(nwt)dt + f f(t)sin(nwt)dt| =0
—7/2 0 |

f(x) = f(-x) but sin(x) = -sin(-x) so the two integrals
have opposite sign and cancel



And the non-trivial terms?

T/2
Ay = gf f(t) cos(nwt)dt

T J—1/2
4 7’/2
Ay = — f(t) cos(nwt)dt
T Jo
4 (! 1
an = 5 J f(t) cos(nwt)dt = 2] frmazt cos(nwt)dt
0 0

1

an = 2 max f t cos(nwt)dt
0

Reminder of integration by parts...

Judv = Uv — fvdu

But remember,
. T =2, S0 W=TT

u =t,du = dt,dv = cos(nwt)dt,v = — sin(nwt)
nw
t S
an = 2fmaz <[— sin(nwt)] — | — sin(nwt)dt)
nw o Jo nw
t 1 =
an = 2fmaz [% sin(nwt) + 33 Cos(nwt)]t_o

1 1 1
an = 2fmaz (% sin(nw) + 3 cos(nw) — )



And the non-trivial terms?

1 1 1
n = 2 fmaz <% sin(nm) + 3 cos(nm) — n2772)

sin(nm) =0
cos(nm) = +1, if n even
cos(nm) = —1, if n odd
a, = 0, if n even

. _4fmax
f(t) in T T

if n odd

fm aX




The answer

f(t) = fmaz/2+ Y, [an cos(nmt)]

Q. — _4fmaa:
e
n2m2

for n odd

a,, = 0 for n even

f(t)

fm aX




How well does it work?

f(t) = fmaz/2 + Z la,, cos(nmt)]

Ap =

n=1
. _4fma:13
n2m?
a,, = 0 for n even

for n odd

Let’s try this out!
Set fmax = 1 for
simplicity

f(t)
T

0.8

0.6

Only a0 term

Obviously
not enough

0.4

0.2

o
~
w



How well does it work?

f(t) = fmaz/2 + Z la,, cos(nmt)]

Let’s try this out!
Set fmax = 1 for
simplicity

. _4fma:13

for n odd

n2m?
a,, = 0 for n even

Only a0,a1 terms

Not great, but
can see this
starting to work



How well does it work?
J8) = Fac/2 + 7;1 [an cosnmh)] ) e try this out

4 fmax Set fmax = 1 for

n = f dd : ..
In = Thagz RO simplicity

a,, = 0 for n even

Only a0,a1,a3 terms

f(t)

Can see this
now??




How well does it work?
J8) = Fac/2 + 7;1 [an cosnmh)] ) e try this out

4 fmax Set fmax = 1 for

n = f dd : ..
In = Thagz RO simplicity

a,, = 0 for n even

Only a0,a1,a3,a5 terms

f(t)

With only 4
terms doing
quite well




How well does it work?
J8) = Fac/2 + 7;1 [an cosnmh)] ) e try this out

~4 frnax Set fmax = 1 for

for 1 odd NN
n2pz o0 simplicity

a,, = 0 for n even

Ap =

Only a0,al1,a3,a5,a7,a9,a11 terms

With only
handful terms
doing quite well




How will we use this for driven oscillators?

We know now that any periodic function f(t) with
period r can be expressed as

Q0O

w=27/T

f(x) = Z lay, cos(nwx) + b, sin(nwx)|

n=0

And we want to solve: mx + bz + kx = f(x)

Let's start by assuming

we can break f(x) down mx -

into f41(x) and f2(x), and
that we know the
solutions x1 and Xz to:

max -

-k = fi1(x)

-k = fa(2)



How will we use this for driven oscillators?
mii + bry + kx1 = fi1(x)
mIs + bro + kxo = fo(x)

T3 = T1 + To
kxs = kx1 + kxo

T3 = T1 + To
T3 = X1 + X9
mxs + brs + krs = m(x1 + 22) + b(x1 + T2) + k(x1 + 22)
mxs + bxrs + kxrs = mxy + bx1 + kx1 + mxo + bxro + kxo
mZsz + bxs + kxs = f1(x) + fo(x) = f(x)
So if we can break up f(x) into pieces for which we

know the solution, we can solve any periodic
driven oscillator



How will we use this for driven oscillators?

So if f(x) = i fn cos(nwx)

n=0

o0 nt" Fourier
r(t) = ), A, COS(W coefficient
n=0
A, = I
" \/(wg — nw?)? + 46%n’w?
20nw

tan o, = — 5
w§ — n-w
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Let's look at example 5.5 in Taylor together

a chilgd on a swing




And your homework, due in 1 week

5.2,5.10,5.11,5.26,5.43



Midterm, due in 1.5 weeks

Your midterm will be on this subject - let's
discuss it now



