On to kinetic energy, potential energy and work

Kinetic energy—__ _1 -
2

r=F-v=—  \Nork done by
dT = F -dr «— force F

2
J F - dr = Work done by force along path from position 1 to 2
1

™

This work = net change in KE!

Let's go over example 4.1
and then problems 4.4, 4.8, all
together



Conservatives forces

If (and only if) a force f:

1.Depends only on the particle’s position, and
not on any other variables

2.Does the same work as a particle moves from
r1 to ro for all paths between rq to r2

3. Then we call the force conservative, and can
define a potential energy U(r) associated to
the force, and

4.Total energy E = T+U conserved

Must define a
U(r) — —Work(rg — 1) — — f F)-dr reference point for
- potential energy!



How do we know that F is independent of path?

F is independent of path if and only if
VX F =0

Take my word (and Taylor’'s word) for it, or read in
Div Grad Curl and all that (or try to work out
problem 4.25, to start)
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Advantages to having conservatives forces

* The ever-important conservation of total energy
(T+U) applies

e Can include multiple potential energy terms, and

the total E=T+U +U>+...Un Is conserved

* The change in total energy is the work done by
the non-conservative forces

Let's do example 4.3 in textbook
together



Relating force and potential energy

derivative U(r) = derivative — f F(r') - dr’

derivative U(r) = —F(r)

Intuitively, this makes sense, but force is a
vector, and any type of energy is a scalar.
How to relate the two?



Relating force and potential energy

dW =W((r - r+dr) =F(r) dr
dW = Fydz + Fydy + F.dz
dW = —dU = —|U(r + dr) — U(r)]
AW = —[U(z + dz,y + dy, z + dz) — U(z,y, 2)] =
oU oU oU

dW = ——dr — —dy — —d
ox oy A P

oU

Oz If you haven’t seen the
P U gradient before, you will
Yy

0y in E&M in the future.

F, = v Very useful to know

0z
oUu . oU  oU

F, =




Potential energy in one dimension

e dU/dx=0atx=B,D,F

e x=B, F are stable points (d?U/dx? > 0)

e x=D is unstable (d?U/dx? < 0)
e Particle at A or E experiences force to larger x
e Particle at C or G experience force to smaller x

e |f total energy < U(D), particle can be stuck inside one
of two wells U
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Examples

Let's go over
Example 4.7
and problems
4.23 and 4.36
together, and
then work on
4.13 in small
groups or by
yourself



Gradients in other coordinate systems

x=rsinfcos¢,y =rsinfsing,z = rcosb

r=rf+ ¢d+ 00
r = rsin 6 cos X + rsin 0 sin ¢y + r cos 0z

or L A .
e, = — = sinf cos ¢px + sin f sin ¢y + cos 0z

~ or
e¢ — 8—¢ b —rsin@Sng]ﬁfi—l—TSiD@COSQﬁ}Af
or

€9 = — = rcosb cospx + rcosb sin oy — rsin 0z

~ 90

>
y

3d polar coordinates are
messy now... but often make
you life a lot easier later on
down the road. Try and follow

this (Taylor skips over it)



3d polar coordinates
or

e, = e sin @ cos X + sin 0 sin ¢y + cos 0z
r
or : A : .
ey = 8_q§ = —rsin 6 sin ¢x + rsin 6 cos ¢y
‘ O : o
A egz%:rcochosgbx—l—rcosesm¢y—frsm9z
VA (..Q()Q(b) ,.’//( U . A~ . . A~ A~
- e, sinfcos ¢x + sin 6 sin @y + cos 0z
€] \/sin? 0 cos? ¢ + sin® Osin® ¢ + cos2 0
. ey —7r sin @ sin ¢x + rsin 6 cos ¢y
= e¢ o = =
€4 r+/sin?0sin® & + sin® 0 cos? ¢
€  1cost cosgx + rcostsin gy — rsin 0z
€0l r+/cos? 6 cos? ¢ + cos? O sin® ¢ + sin® 0

As before in 2d, unit vectors
are not constant



3d polar coordinates

sin 6 cos ¢X + sin 6 sin ¢y + cos 0z
\/sin? 6 cos? ¢ + sin? O sin® ¢ + cos? 6

I = sin 0 cos px + sin 0 sin ¢y + cos 0z

r —

—7r sin 6 sin X + 7 sin 6 cos @y

¢ = r/sin? @ sin? ¢ + sin? 6 cos? ¢
¢ = — sin ¢k + cos oy
j_ 7 cos 0 cos X + 1 cos 0 sin ¢y — 1 sin 0z
. A ry/cos2 0 cos? ¢ + cos? 0 sin’ ¢ + sin” 6
y 6 = cos 6 cos pX + cos 0 sin ¢y — sin 0z




Unit vectors in 3d polar coordinates

;
2] (.-.a.mTé'

0 \H I = sin 6 cos ¢X + sin 6 sin ¢y + cos 0z
/ qu — sin X + cos ¢y
> § = cos 0 cos ¢k + cos 0 sin ¢y — sin 0z
-71))\ <~ 7 ~"
v

Actually not so ugly in the end
- lots of terms have canceled



How does this help us find the gradient of a function 7

' = sin 0 cos X + sin 6 sin ¢y + cos 6z
¢ = —sin ¢X + cos ¢y

J § = cos b cos ®X + cos 0 sin ¢y — sin 0z
: T (o0) /L7

o /T df = [f(r +dr) — f(r)
/ df = — (a—Ud:c + Z—(y]dy + Z—Zdz)
T e (T

.\ —'?i)j\ < / é’z

K df = Vf dr
/ But also .
What is dr? dr 4 _dg 4+ 2L f do

0



How does this help us calculate the gradient?

' = sin 0 cos X + sin 6 sin ¢y + cos 6z

b = — sin dX + cos oy
= cos 6 cos pX + cos 0 sin ¢y — sin 0z

Dy

dr = d(rr) = rdr + rdr

dr:f'd'rJr'r(ardr @de ot ¢>

or ¢
> or
y il
or 0
x o A o
%:COS@COS¢X—|—COS@SIH¢y—Sll’l(9Z:9
or

8_¢ — — sin 6 sin ¢x + sin 6 cos ¢y = sinﬁ(ﬁ



Almost there...

. or or or
dI’ — I'd’r +r <§d7a -+ %d(g -+ a—¢d¢>

‘

(10.0) /74 A A
. S dr = rdr +r ((9d«9 + sin 9gbd¢)
" dr = #dr + 0rdf + ¢r sin Od¢
| df =V dr
T of,  of . of
s / ‘
r df = “Lar + ZLao + 2L 4
Y J= 5,0+ 5g W T 5590

_of of of
Vf-dr= arerr 89d9+8q§d¢



Equating our two definitions

dr = #dr + 0rdf + ¢r sin Odo

df = Vf - dr
df = %dr 4 %d@ + %d¢ =dr(Vf), +rdd(Vf)o+rsinfde(Vf)g
_of. 10f, 1 9f,
V= Er+;@9+rsin98¢¢

Hope you followed that. See
Div Grad Curl and all That for
more derivations. Wanted you

to see it at least once



Gradient for Coulomb potential

sy 1@ _ C
r r
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Elastic collisions

» Elastic collision: collision via a conservative
force with U(|r1-r2]) — O (or constant) as |ri-r2|
—» 00
e Conservative force implies conservation of

energy, but since U is zero at large
separation, initial and final kinetic energies

are equal y
Ball
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Elastic collisions

» Elastic collision: collision via a conservative
force with U(|r1-r2]) — O (or constant) as |ri-r2|
—» 00
e Conservative force implies conservation of

energy, but since U is zero at large
separation, initial and final kinetic energies
are equal y

Ball
;il A Let's work out
; Example 4.8
Ball 1  Ball 2 /\9 with m¢ # mo
X

S (ie problem
e Y 4.46)




Extension to large numbers of particles

 Make sure you read Taylor 4.9-4.10. Will not go

over the derivations and just quote the

(hopefully intuitive) results:

* For N-particle system, can still define a
potential U, and then the net force on particle

= -Vq4U, where Vq is the gradient with

respect to the coordinates of particle a

* Energy conservation still applies, as does the
work-KE theorem

Let’'s work on Example 4.9 in book



Example 4.9 questions

e Why does normal force do no work?

 Why does friction do no work (hint, what does “without
slipping” mean?)

e How do we calculate moment of inertia for a cylinder?

I = / pr2dV
Vv

p = Mass/Volume = M /(rR*Z)
dV = 2nrdrdz

z R
I:M/(T('R2Z)/ dz/ 2mrr2dr
0 0
R
I = M/(nR?) / 2mridr

0
R ;
I =2M/R? / rdr
0

2M
] = 41 R
( ) 4R2[T ]0
Z M M R?

= ——RY =
2R2R 2




Homework (due as usual in 1 week)

Taylor4.7,4.12,4.35,4.41,4.47,4.48, 4.53



