
115On to kinetic energy, potential energy and work

Kinetic energy

Work done by 
force F

T “ 1

2

mv2

9T “ 1

2

m
d

dt
pv ¨ vq “ m

2

p 9v ¨ v ` v ¨ 9vq “ mp 9v ¨ vq

9T “ F ¨ v “ dT

dt
dT “ F ¨ dr

ª 2

1
F ¨ dr “ Work done by force along path from position 1 to 2

Let’s go over example 4.1
and then problems 4.4, 4.8, all 
together

This work = net change in KE!



116Conservatives forces

If (and only if) a force f:
1.Depends only on the particle’s position, and 

not on any other variables
2.Does the same work as a particle moves from 
r1 to r2 for all paths between r1 to r2

3.Then we call the force conservative, and can 
define a potential energy U(r) associated to 
the force, and

4.Total energy E = T+U conserved

Uprq “ ´Workpr0 Ñ rq “ ´
ª r

r0

Fpr1q ¨ dr1
Must define a 

reference point for 
potential energy!



117How do we know that F is independent of path?

F is independent of path if and only if

r
°

F “ 0
Take my word (and Taylor’s word) for it, or read in 

Div Grad Curl and all that (or try to work out 
problem 4.25, to start)



118Advantages to having conservatives forces

• The ever-important conservation of total energy 
(T+U) applies

• Can include multiple potential energy terms, and 
the total E=T+U1+U2+...UN is conserved

• The change in total energy is the work done by 
the non-conservative forces

Let’s do example 4.3 in textbook 
together



119Relating force and potential energy

Uprq “ ´Workpr0 Ñ rq “ ´
ª r

r0

Fpr1q ¨ dr1

derivative Uprq “ derivative ´
ª r

r0

Fpr1q ¨ dr1

derivative Uprq “ ´Fprq

Intuitively, this makes sense, but force is a 
vector, and any type of energy is a scalar. 

How to relate the two?

?



120Relating force and potential energy

F

x

“ ´BU
Bx

F

y

“ ´BU
By

F

z

“ ´BU
Bz

F “ ´px̂BU
Bx ` ŷ

BU
By ` ẑ

BU
Bz q “ ´rU

If you haven’t seen the 
gradient before, you will 
in E&M in the future. 
Very useful to know

dW “ W pr Ñ r ` drq “ Fprq ¨ dr
dW “ F

x

dx ` F

y

dy ` F

z

dz

dW “ ´dU “ ´rUpr ` drq ´ Uprqs
dW “ ´rUpx ` dx, y ` dy, z ` dzq ´ Upx, y, zqs “

dW “ ´BU
Bx dx ´ BU

By dy ´ BU
Bz dz



121Potential energy in one dimension

• dU/dx = 0 at x = B, D, F
• x=B, F are stable points (d2U/dx2 > 0)
• x=D is unstable (d2U/dx2 < 0)

• Particle at A or E experiences force to larger x
• Particle at C or G experience force to smaller x
• If total energy < U(D), particle can be stuck inside one 

of two wells

U(D)



122Examples

Let’s go over 
Example 4.7 
and problems 
4.23 and 4.36 
together, and 
then work on 
4.13 in small 
groups or by 
yourself



123Gradients in other coordinate systems

x = r sin ✓ cos�, y = r sin ✓ sin�, z = r cos ✓

r = r

ˆ

r+ �

ˆ

�+ ✓

ˆ

✓

r = r sin ✓ cos�

ˆ

x+ r sin ✓ sin�

ˆ

y + r cos ✓

ˆ

z

er =

@r

@r

= sin ✓ cos�

ˆ

x+ sin ✓ sin�

ˆ

y + cos ✓

ˆ

z

e� =

@r

@�

= �r sin ✓ sin�

ˆ

x+ r sin ✓ cos�

ˆ

y

e✓ =

@r

@✓

= r cos ✓ cos�

ˆ

x+ r cos ✓ sin�

ˆ

y � r sin ✓

ˆ

z

3d polar coordinates are 
messy now... but often make 

you life a lot easier later on 
down the road. Try and follow 

this (Taylor skips over it)



1243d polar coordinates

er =

@r

@r
= sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆz

e� =

@r

@�
= �r sin ✓ sin�ˆx+ r sin ✓ cos�ˆy

e✓ =

@r

@✓
= r cos ✓ cos�ˆx+ r cos ✓ sin�ˆy � r sin ✓ˆz

r̂ = êr =

er

|êr|
=

sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆzp
sin

2 ✓ cos2 �+ sin

2 ✓ sin2 �+ cos

2 ✓

ˆ� = ê� =

e�

|ê�|
=

�r sin ✓ sin�ˆx+ r sin ✓ cos�ˆy

r
p
sin

2 ✓ sin2 �+ sin

2 ✓ cos2 �

ˆ✓ =

e✓

|ê✓|
=

r cos ✓ cos�ˆx+ r cos ✓ sin�ˆy � r sin ✓ˆz

r
p
cos

2 ✓ cos2 �+ cos

2 ✓ sin2 �+ sin

2 ✓

As before in 2d, unit vectors 
are not constant



1253d polar coordinates

r̂ =

sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆzp
sin

2 ✓ cos2 �+ sin

2 ✓ sin2 �+ cos

2 ✓

r̂ = sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆz

ˆ� =

�r sin ✓ sin�ˆx+ r sin ✓ cos�ˆy

r
p
sin

2 ✓ sin2 �+ sin

2 ✓ cos2 �
ˆ� = � sin�ˆx+ cos�ˆy

ˆ✓ =

r cos ✓ cos�ˆx+ r cos ✓ sin�ˆy � r sin ✓ˆz

r
p
cos

2 ✓ cos2 �+ cos

2 ✓ sin2 �+ sin

2 ✓
ˆ✓ = cos ✓ cos�ˆx+ cos ✓ sin�ˆy � sin ✓ˆz



126Unit vectors in 3d polar coordinates

r̂ = sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆz

ˆ� = � sin�ˆx+ cos�ˆy

ˆ✓ = cos ✓ cos�ˆx+ cos ✓ sin�ˆy � sin ✓ˆz

Actually not so ugly in the end 
- lots of terms have canceled 



127How does this help us find the gradient of a function f?

r̂ = sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆz

ˆ� = � sin�ˆx+ cos�ˆy

ˆ✓ = cos ✓ cos�ˆx+ cos ✓ sin�ˆy � sin ✓ˆz

What is dr?

df “ rfpr ` drq ´ fprqs

df “ ´
ˆBU

Bx dx ` BU
By dy ` BU

Bz dz

˙

rf “ ´
ˆBU

Bx ˆ

x ` BU
By ˆ

y ` BU
Bz ˆ

z

˙
Ñ

df “ rf ¨ dr
But also ...

df “ Bf
Br dr ` Bf

B✓ d✓ ` Bf
B�d�



128How does this help us calculate the gradient?

r̂ = sin ✓ cos�ˆx+ sin ✓ sin�ˆy + cos ✓ˆz

ˆ� = � sin�ˆx+ cos�ˆy

ˆ✓ = cos ✓ cos�ˆx+ cos ✓ sin�ˆy � sin ✓ˆz

dr = d(rˆr) = ˆ

rdr + rdˆr

dr =

ˆ

rdr + r

✓
@ˆr

@r
dr +

@ˆr

@✓
d✓ +

@ˆr

@�
d�

◆

@ˆr

@r
= 0

@ˆr

@✓
= cos ✓ cos�ˆx+ cos ✓ sin�ˆy � sin ✓ˆz =

ˆ✓

@ˆr

@�
= � sin ✓ sin�ˆx+ sin ✓ cos�ˆy = sin ✓ ˆ�



129Almost there...

dr = r̂dr + r

✓
@r̂

@r
dr +

@r̂

@✓
d✓ +

@r̂

@�
d�

◆

dr = r̂dr + r
⇣
✓̂d✓ + sin ✓�̂d�

⌘

dr = r̂dr + ✓̂rd✓ + �̂r sin ✓d�

df = rf · dr

df =
@f

@r
dr +

@f

@✓
d✓ +

@f

@�
d�

rf · dr =
@f

@r
dr +

@f

@✓
d✓ +

@f

@�
d�



130Equating our two definitions

Hope you followed that. See 
Div Grad Curl and all That for 
more derivations. Wanted you 

to see it at least once

dr = r̂dr + ✓̂rd✓ + �̂r sin ✓d�

df = rf · dr

df =
@f

@r
dr +

@f

@✓
d✓ +

@f

@�
d� = dr(rf)r + rd✓(rf)✓ + r sin ✓d�(rf)�

rf =
@f

@r
r̂+

1

r

@f

@✓
✓̂ +

1

r sin ✓

@f

@�
�̂



131Gradient for Coulomb potential

U(r) =
kqQ

r
=

C

r

rU =
@U

@r
r̂+

1

r

@U

@✓
✓̂ +

1

r sin ✓

@U

@�
�̂

rU =
@U

@r
r̂ = �C

r2
r̂

F(r) = �rU =
C

r2
r̂



132Elastic collisions

• Elastic collision: collision via a conservative 
force with U(|r1-r2|) → 0 (or constant) as |r1-r2| 
→ ∞
• Conservative force implies conservation of 

energy, but since U is zero at large 
separation, initial and final kinetic energies 
are equal



133Elastic collisions

• Elastic collision: collision via a conservative 
force with U(|r1-r2|) → 0 (or constant) as |r1-r2| 
→ ∞
• Conservative force implies conservation of 

energy, but since U is zero at large 
separation, initial and final kinetic energies 
are equal

Let’s work out 
Example 4.8 
with m1 ≠ m2 
(ie problem 
4.46)



134Extension to large numbers of particles

• Make sure you read Taylor 4.9-4.10. Will not go 
over the derivations and just quote the 
(hopefully intuitive) results:
• For N-particle system, can still define a 

potential U, and then the net force on particle 
α = -∇αU, where ∇α is the gradient with 
respect to the coordinates of particle α

• Energy conservation still applies, as does the 
work-KE theorem

Let’s work on Example 4.9 in book



135Example 4.9 questions

• Why does normal force do no work?
• Why does friction do no work (hint, what does “without 

slipping” mean?)
• How do we calculate moment of inertia for a cylinder?

R

Z

I =

Z

V
⇢r2dV

⇢ = Mass/Volume = M/(⇡R2Z)

dV = 2⇡rdrdz

I = M/(⇡R2Z)

Z z

0
dz

Z R

0
2⇡rr2dr

I = M/(⇡R2
)

Z R

0
2⇡r3dr

I = 2M/R2

Z R

0
r3dr

I =

2M

4R2
[r4]R0

I =

M

2R2
R4

=

MR2

2



136Homework (due as usual in 1 week)

Taylor 4.7, 4.12, 4.35, 4.41, 4.47, 4.48, 4.53


