On to kinetic energy, potential energy and work

Kinetic energy $\longrightarrow T=\frac{1}{2} m v^{2}$

$$
\dot{T}=\frac{1}{2} m \frac{d}{d t}(\mathbf{v} \cdot \mathbf{v})=\frac{m}{2}(\dot{\mathbf{v}} \cdot \mathbf{v}+\mathbf{v} \cdot \dot{\mathbf{v}})=m(\dot{\mathbf{v}} \cdot \mathbf{v})
$$

$$
\dot{T}=\mathbf{F} \cdot \mathbf{v}=\frac{d T}{d t} \quad \text { Work done by }
$$

$$
d T=\mathbf{F} \cdot d \mathbf{r} \longleftarrow \text { force } \mathbf{F}
$$

$\int_{1}^{2} \mathbf{F} \cdot d \mathbf{r}=$ Work done by force along path from position 1 to 2
This work = net change in KE!
Let's go over example 4.1 and then problems 4.4, 4.8, all together

If (and only if) a force f:
1.Depends only on the particle's position, and not on any other variables
2.Does the same work as a particle moves from \mathbf{r}_{1} to \mathbf{r}_{2} for all paths between \mathbf{r}_{1} to \mathbf{r}_{2}
3.Then we call the force conservative, and can define a potential energy $U(\mathbf{r})$ associated to the force, and
4. Total energy $\mathrm{E}=\mathrm{T}+\mathrm{U}$ conserved

Must define a $U(\mathbf{r})=-\operatorname{Work}\left(\mathrm{r}_{0} \rightarrow \mathrm{r}\right)=-\int_{\mathrm{r}_{0}}^{\mathrm{r}} \mathrm{F}\left(\mathbf{r}^{\prime}\right) \cdot d \mathrm{r}^{\prime} \quad \begin{array}{r}\text { reference point for } \\ \text { potential energy! }\end{array}$

F is independent of path if and only if

$$
\nabla X \mathbf{F}=0
$$

Take my word (and Taylor's word) for it, or read in Div Grad Curl and all that (or try to work out problem 4.25, to start)

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \quad\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Advantages to having conservatives forces

- The ever-important conservation of total energy (T+U) applies
- Can include multiple potential energy terms, and the total $E=T+U_{1}+U_{2}+\ldots U_{N}$ is conserved - The change in total energy is the work done by the non-conservative forces

Let's do example 4.3 in textbook together

號正

$$
\begin{gathered}
U(\mathbf{r})=-\operatorname{Work}\left(\mathbf{r}_{\mathbf{0}} \rightarrow \mathbf{r}\right)=-\int_{\mathbf{r}_{\mathbf{0}}}^{\mathbf{r}} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \mathbf{d r}^{\prime} \\
\text { derivative } U(\mathbf{r})=\operatorname{derivative}-\int_{\mathbf{r}_{\mathbf{0}}}^{\mathbf{r}} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot \mathbf{d r}^{\prime} \\
\text { derivative } U(\mathbf{r})=-\mathbf{F}(\mathbf{r})
\end{gathered}
$$

Intuitively, this makes sense, but force is a vector, and any type of energy is a scalar. How to relate the two?

Relating force and potential energy

$$
\begin{gathered}
d W=W(\mathbf{r} \rightarrow \mathbf{r}+d \mathbf{r})=\mathbf{F}(\mathbf{r}) \cdot d \mathbf{r} \\
d W=F_{x} d x+F_{y} d y+F_{z} d z \\
d W=-d U=-[U(\mathbf{r}+d \mathbf{r})-U(\mathbf{r})] \\
d W=-[U(x+d x, y+d y, z+d z)-U(x, y, z)]= \\
d W=-\frac{\partial U}{\partial x} d x-\frac{\partial U}{\partial y} d y-\frac{\partial U}{\partial z} d z \\
F_{x}=-\frac{\partial U}{\partial x} \quad \text { If you haven't seen the } \\
F_{y}=-\frac{\partial U}{\partial y} \quad \text { gradient before, you will } \\
F_{z}=-\frac{\partial U}{\partial z} \quad \text { in E\&M in the future. } \\
\text { Very useful to know } \\
\mathbf{F}=-\left(\hat{\mathbf{x}} \frac{\partial U}{\partial x}+\hat{\mathbf{y}} \frac{\partial U}{\partial y}+\hat{\mathbf{z}} \frac{\partial U}{\partial z}\right)=-\nabla U
\end{gathered}
$$

- $d U / d x=0$ at $x=B, D, F$
- $x=B, F$ are stable points $\left(d^{2} U / d x^{2}>0\right)$
- $x=D$ is unstable $\left(d^{2} U / d x^{2}<0\right)$

Particle at A or E experiences force to larger x Particle at C or G experience force to smaller x If total energy $<U(D)$, particle can be stuck inside one of two wells

Let's go over
Example 4.7
and problems
4.23 and 4.36
together, and
then work on
4.13 in small
groups or by
yourself

Gradients in other coordinate systems

$$
x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta
$$

$$
\mathbf{r}=r \hat{\mathbf{r}}+\phi \hat{\phi}+\theta \hat{\theta}
$$

$$
\mathbf{r}=r \sin \theta \cos \phi \hat{\mathbf{x}}+r \sin \theta \sin \phi \hat{\mathbf{y}}+r \cos \theta \hat{\mathbf{z}}
$$

$$
\mathbf{e}_{r}=\frac{\partial \mathbf{r}}{\partial r}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

$$
\mathbf{e}_{\phi}=\frac{\partial \mathbf{r}}{\partial \phi}=-r \sin \theta \sin \phi \hat{\mathbf{x}}+r \sin \theta \cos \phi \hat{\mathbf{y}}
$$

$$
\mathbf{e}_{\theta}=\frac{\partial \mathbf{r}}{\partial \theta}=r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}}
$$

3d polar coordinates are

 messy now... but often make you life a lot easier later on down the road. Try and follow this (Taylor skips over it)$$
\begin{gathered}
\mathbf{e}_{r}=\frac{\partial \mathbf{r}}{\partial r}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
\mathbf{e}_{\phi}=\frac{\partial \mathbf{r}}{\partial \phi}=-r \sin \theta \sin \phi \hat{\mathbf{x}}+r \sin \theta \cos \phi \hat{\mathbf{y}}
\end{gathered}
$$

$$
\mathbf{e}_{\theta}=\frac{\partial \mathbf{r}}{\partial \theta}=r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}}
$$

$$
\hat{\mathbf{r}}=\hat{\mathbf{e}}_{r}=\frac{\mathbf{e}_{r}}{\left|\hat{\mathbf{e}}_{r}\right|}=\frac{\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}}{\sqrt{\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta}}
$$

$$
\hat{\phi}=\hat{\mathbf{e}}_{\phi}=\frac{\mathbf{e}_{\phi}}{\left|\hat{\mathbf{e}}_{\phi}\right|}=\frac{-r \sin \theta \sin \phi \hat{\mathbf{x}}+r \sin \theta \cos \phi \hat{\mathbf{y}}}{r \sqrt{\sin ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta \cos ^{2} \phi}}
$$

$$
\hat{\theta}=\frac{\mathbf{e}_{\theta}}{\left|\hat{\mathbf{e}}_{\theta}\right|}=\frac{r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}}}{r \sqrt{\cos ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta}}
$$

As before in 2d, unit vectors are not constant

$$
\begin{gathered}
\hat{\mathbf{r}}=\frac{\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}}{\sqrt{\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta}} \\
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
\hat{\phi}=\frac{-r \sin \theta \sin \phi \hat{\mathbf{x}}+r \sin \theta \cos \phi \hat{\mathbf{y}}}{r \sqrt{\sin ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta \cos ^{2} \phi}} \\
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}} \\
\hat{\theta}=\frac{r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}}}{r \sqrt{\cos ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta}} \\
\hat{\theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}
\end{gathered}
$$

$\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}$ $\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}$
$\hat{\theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}$

Actually not so ugly in the end

- lots of terms have canceled

How does this help us find the gradient of a function f?

$$
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

$$
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}
$$

$$
\hat{\theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}
$$

$$
\begin{gathered}
d f=[f(\mathbf{r}+d \mathbf{r})-f(\mathbf{r})] \\
d f=-\left(\frac{\partial U}{\partial x} d x+\frac{\partial U}{\partial y} d y+\frac{\partial U}{\partial z} d z\right) \\
\nabla f=-\left(\frac{\partial U}{\partial x} \hat{\mathbf{x}}+\frac{\partial U}{\partial y} \hat{\mathbf{y}}+\frac{\partial U}{\partial z} \hat{\mathbf{z}}\right) \rightarrow \\
d f=\nabla f \cdot d \mathbf{r}
\end{gathered}
$$

But also ...

$$
d f=\frac{\partial f}{\partial r} d r+\frac{\partial f}{\partial \theta} d \theta+\frac{\partial f}{\partial \phi} d \phi
$$

$$
\begin{gathered}
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}} \\
\hat{\theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}
\end{gathered}
$$

$$
d \mathbf{r}=d(r \hat{\mathbf{r}})=\hat{\mathbf{r}} d r+r d \hat{\mathbf{r}}
$$

$$
d \mathbf{r}=\hat{\mathbf{r}} d r+r\left(\frac{\partial \hat{\mathbf{r}}}{\partial r} d r+\frac{\partial \hat{\mathbf{r}}}{\partial \theta} d \theta+\frac{\partial \hat{\mathbf{r}}}{\partial \phi} d \phi\right)
$$

$$
\frac{\partial \hat{\mathbf{r}}}{\partial r}=0
$$

$$
\begin{gathered}
\frac{\partial \hat{\mathbf{r}}}{\partial \theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}=\hat{\theta} \\
\frac{\partial \hat{\mathbf{r}}}{\partial \phi}=-\sin \theta \sin \phi \hat{\mathbf{x}}+\sin \theta \cos \phi \hat{\mathbf{y}}=\sin \theta \hat{\phi}
\end{gathered}
$$

Almost there...

$$
\begin{gathered}
d \mathbf{r}=\hat{\mathbf{r}} d r+r\left(\frac{\partial \hat{\mathbf{r}}}{\partial r} d r+\frac{\partial \hat{\mathbf{r}}}{\partial \theta} d \theta+\frac{\partial \hat{\mathbf{r}}}{\partial \phi} d \phi\right) \\
d \mathbf{r}=\hat{\mathbf{r}} d r+r(\hat{\theta} d \theta+\sin \theta \hat{\phi} d \phi) \\
d \mathbf{r}=\hat{\mathbf{r}} d r+\hat{\theta} r d \theta+\hat{\phi} r \sin \theta d \phi \\
\vec{y} \quad d f=\nabla f \cdot d \mathbf{r} \\
d f=\frac{\partial f}{\partial r} d r+\frac{\partial f}{\partial \theta} d \theta+\frac{\partial f}{\partial \phi} d \phi \\
\nabla f \cdot d \mathbf{r}=\frac{\partial f}{\partial r} d r+\frac{\partial f}{\partial \theta} d \theta+\frac{\partial f}{\partial \phi} d \phi
\end{gathered}
$$

Equating our two definitions

$$
\begin{gathered}
d \mathbf{r}=\hat{\mathbf{r}} d r+\hat{\theta} r d \theta+\hat{\phi} r \sin \theta d \phi \\
d f=\nabla f \cdot d \mathbf{r}
\end{gathered}
$$

$$
d f=\frac{\partial f}{\partial r} d r+\frac{\partial f}{\partial \theta} d \theta+\frac{\partial f}{\partial \phi} d \phi=d r(\nabla f)_{r}+r d \theta(\nabla f)_{\theta}+r \sin \theta d \phi(\nabla f)_{\phi}
$$

$$
\nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}
$$

Hope you followed that. See Div Grad Curl and all That for more derivations. Wanted you to see it at least once

$$
\begin{gathered}
U(r)=\frac{k q Q}{r}=\frac{C}{r} \\
\nabla U=\frac{\partial U}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial U}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial U}{\partial \phi} \hat{\phi} \\
\nabla U=\frac{\partial U}{\partial r} \hat{\mathbf{r}}=-\frac{C}{r^{2}} \hat{\mathbf{r}} \\
\mathbf{F}(\mathbf{r})=-\nabla U=\frac{C}{r^{2}} \hat{\mathbf{r}}
\end{gathered}
$$

Elastic collision: collision via a conservative force with $U\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right) \rightarrow 0$ (or constant) as $\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$
$\rightarrow \infty$

- Conservative force implies conservation of energy, but since U is zero at large separation, initial and final kinetic energies are equal

Elastic collisions

Elastic collision: collision via a conservative force with $U\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right) \rightarrow 0$ (or constant) as $\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$
$\rightarrow \infty$

- Conservative force implies conservation of energy, but since U is zero at large separation, initial and final kinetic energies are equal

Let's work out Example 4.8 with $\mathrm{m}_{1} \neq \mathrm{m}_{2}$ (ie problem 4.46)

Make sure you read Taylor 4.9-4.10. Will not go over the derivations and just quote the (hopefully intuitive) results:

- For N-particle system, can still define a potential U, and then the net force on particle $\alpha=-\nabla_{\alpha} U$, where ∇_{α} is the gradient with respect to the coordinates of particle a
- Energy conservation still applies, as does the work-KE theorem

Let's work on Example 4.9 in book

Example 4.9 questions

- Why does normal force do no work?
- Why does friction do no work (hint, what does "without slipping" mean?)
How do we calculate moment of inertia for a cylinder?

$$
\begin{gathered}
I=\int_{V} \rho r^{2} d V \\
\rho=\text { Mass/Volume }=M /\left(\pi R^{2} Z\right) \\
d V=2 \pi r d r d z \\
I=M /\left(\pi R^{2} Z\right) \int_{0}^{z} d z \int_{0}^{R} 2 \pi r r^{2} d r \\
I=M /\left(\pi R^{2}\right) \int_{0}^{R} 2 \pi r^{3} d r \\
I=2 M / R^{2} \int_{0}^{R} r^{3} d r \\
I=\frac{2 M}{4 R^{2}}\left[r^{4}\right]_{0}^{R} \\
I=\frac{M}{2 R^{2}} R^{4}=\frac{M R^{2}}{2}
\end{gathered}
$$

Taylor 4.7, 4.12, 4.35, 4.41, 4.47, 4.48, 4.53

