Back to our fun example

We know that this tennis ball will not accelerate forever friction must slow down the acceleration!

Some things to think about re: air resistance

Typically assume that air resistance (ie drag) is along the direction of the velocity vector (typically pointing away from it)

- As mentioned in Taylor, not always true, but largely true, and simplifies equations

$$
\begin{aligned}
& \mathbf{f}_{\mathrm{drag}}=-f(v) \mathbf{v} \\
& f(v)=b v+c v^{2}
\end{aligned}
$$

Related to viscosity
Related to density
(inertia) of medium

Equations of motion for projectile with linear air resistance

$$
\begin{gathered}
m \ddot{\mathbf{r}}=m \mathbf{g}-b \mathbf{v}=m \dot{\mathbf{v}} \\
m \dot{v}_{x}=-b v_{x} \\
m \dot{v}_{y}=m g-b v_{y} \\
m \dot{v}_{z}=-b v_{z}
\end{gathered}
$$

We will solve lots of differential equations in this course. Exponentials are a good guess for solutions when derivatives of a function are some constant times itself

$$
\begin{gathered}
\dot{v}_{x}=-k v_{x}, k=b / m \\
v_{x}(t)=A e^{-k t} \\
v_{x}(0)=v_{0}=A e^{0}=A \\
v_{x}(t)=v_{0} e^{-k t}=v_{0} e^{-t / \tau}(\tau=1 / k)
\end{gathered}
$$

$$
\begin{gathered}
v_{x}(t)=v_{0} e^{-k t}=v_{0} e^{-t / \tau}=d x / d t \\
d x=v_{0} e^{-t / \tau} d t \\
\int d x=\int v_{0} e^{-t^{\prime} / \tau} d t^{\prime} \\
x-x_{0}=v_{0} \int_{0}^{t} e^{-t^{\prime} / \tau} d t^{\prime}
\end{gathered}
$$

Always get a constant of integration

$$
\begin{array}{cl}
x-x_{0}=v_{0} \int_{t^{\prime}=0}^{t^{\prime}=t} e^{-t^{\prime} / \tau} d t^{\prime} \\
q=-t^{\prime} / \tau, d q=-d t^{\prime} / \tau \rightarrow d t^{\prime}=-\tau d q \\
x-x_{0}=-v_{0} \tau \int_{q=0}^{q=t / \tau} e^{q} d q & \text { We will } \\
x-x_{0}=-v_{0} \tau\left[e^{q}\right]_{q=0}^{q=-t / \tau} & \text { change lots } \\
x-x_{0}=-v_{0} \tau\left[e^{-t / \tau}-1\right] & \text { in variables } \\
\text { integrations } \\
x=x_{0}+v_{0} \tau\left[1-e^{-t / \tau}\right] & \text { this } \\
\text { semester :) }
\end{array}
$$

Looking at the solution some more

First of many

Taylor expansions

$$
x=x_{0}+v_{0} \tau\left[1-e^{-t / \tau}\right]
$$

when $t \rightarrow \infty$, exponential small

$$
x \sim x_{0}+v_{0} \tau
$$

when drag small, $b \sim 0, \tau \rightarrow \infty$ $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
$x \sim x_{0}+v_{0} \tau[1-(1-t / \tau)] \sim x_{0}+v_{0} t$

Good to observe expected behavior in limits!

$$
\begin{aligned}
& \mathrm{v}_{0}=1.5 \\
& \tau=0.5
\end{aligned}
$$

$$
\begin{gathered}
m \dot{v}=m g-b v \\
\dot{v}=g-(b / m) v \\
\dot{v}=0 \rightarrow v_{\text {terminal }}=\frac{m g}{b}
\end{gathered}
$$

Pay attention to sign of v ! Gravity accelerates the ball until:
drag force = grav. force At that point, a terminal velocity is reached

$$
\begin{gathered}
m \dot{v}=m g-b v \\
m \dot{v}=-b\left(v-v_{\mathrm{ter}}\right)
\end{gathered}
$$

$$
\text { let } u=\left(v-v_{\text {ter }}\right), \dot{u}=\dot{v} \text { so }
$$

$$
m \dot{u}=-b u
$$

We just solved this

 differential equation!$$
\begin{gathered}
u(t)=u_{0} e^{-t / \tau} \\
v(t)-v_{\text {term }}=A e^{-t / \tau} \\
v(0)-v_{\text {term }}=A e^{0}=A \rightarrow A=v_{0}-v_{\text {term }} \\
v(t)-v_{\text {term }}=\left(v_{0}-v_{\text {term }}\right) e^{-t / \tau} \\
v(t)=v_{\text {term }}+\left(v_{0}-v_{\text {term }}\right) e^{-t / \tau}
\end{gathered}
$$

$$
\begin{gathered}
v(t)=d y / d t=v_{\text {term }}+\left(v_{0}-v_{\text {term }}\right) e^{-t / \tau} \\
\int_{y_{0}}^{y} d y^{\prime}=\int_{0}^{t} v_{\text {term }}+\left(v_{0}-v_{\text {term }}\right) e^{-t^{\prime} / \tau} d t^{\prime} \\
y-y_{0}=v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \int_{0}^{t} e^{-t^{\prime} / \tau} d t^{\prime} \\
z=-t^{\prime} / \tau, d z=-d t^{\prime} / \tau, d t^{\prime}=-\tau d z \\
y-y_{0}=v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right)(-\tau) \int_{0}^{-t / \tau} e^{z} d z \\
y-y_{0}=v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right)(-\tau)\left[e^{z}\right]_{0}^{-t / \tau} \\
y-y_{0}=v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right)(-\tau)\left(e^{-t / \tau}-1\right) \\
y=y_{0}+v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \tau\left(1-e^{-t / \tau}\right)
\end{gathered}
$$

Let's again consider what happens in extremes

$v(t)=v_{\text {term }}+\left(v_{0}-v_{\text {term }}\right) e^{-t / \tau}$ when $t \rightarrow \infty$, exponential small

$$
v(\infty) \sim v_{\text {term }}
$$

$$
\begin{gathered}
y=y_{0}+v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \tau\left(1-e^{-t / \tau}\right) \\
\text { when drag small, } b \sim 0, \tau \rightarrow \infty \\
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
y=y_{0}+v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \tau\left[1-\left(1-t / \tau+\frac{t^{2}}{2 \tau^{2}}\right)\right] \\
\left.y=y_{0}+v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \tau\left[t / \tau-\frac{t^{2}}{22^{2}}\right)\right] \\
y=y_{0}+v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right)\left(t-\frac{t^{2}}{2 \tau}\right) \\
y=y_{0}+v_{0} t+\frac{t^{2}}{2 \tau}\left(v_{\text {term }}-v_{0}\right)
\end{gathered}
$$

for small drag, $v_{0} \ll v_{\text {term }}$ and remember that $\tau=m / b, v_{\text {term }}=m g / b$

$$
y=y_{0}+v_{0} t+\frac{b t^{2}}{2 m}(m g / b)=y_{0}+v_{0} t+\frac{g t^{2}}{2}
$$

If we throw the projectile with initial velocity downward greater than the terminal velocity? (Problem 2.5 in Taylor)

Projectiles

$$
x(t)=v_{0} \tau\left[1-e^{-t / \tau}\right]
$$

$y(t)=v_{\text {term }} t+\left(v_{0}-v_{\text {term }}\right) \tau\left(1-e^{-t / \tau}\right)$

Let's take a moment
here to check units
and see if that makes
sense

$$
x(t)=v_{0} \tau\left[1-e^{-t / \tau}\right]
$$

$$
y(t)=v_{\operatorname{term}} t+\left(v_{0}-v_{\operatorname{term}}\right) \tau\left(1-e^{-t / \tau}\right)
$$

As Taylor points out, for projectiles, it's perhaps better to flip the sign of v_{t} (is that obvious why?)

$$
\begin{gathered}
\qquad x(t)=v_{x 0} \tau\left[1-e^{-t / \tau}\right] \\
y(t)=v_{\text {term }} t+\left(v_{y 0}-v_{\text {term }}\right) \tau\left(1-e^{-t / \tau}\right) \\
y(x)=\frac{v_{y 0}+v_{\text {term }}}{v_{x 0}} x+v_{\text {term }} \tau \ln \left(1-\frac{x}{v_{x 0} \tau}\right) \\
\text { Invert } \mathrm{x}(\mathrm{t}) \text { to solve for } \mathrm{t}(\mathrm{x}) \text { and then plug in, Iet's do } \\
\text { these first steps together before some nasty algebra }
\end{gathered}
$$

As Taylor points out, for projectiles, it's perhaps better to flip the sign of v_{t} (is that obvious why?)

$$
\begin{gathered}
x(t)=v_{x 0} \tau\left[1-e^{-t / \tau}\right] \\
y(t)=v_{\text {term }} t+\left(v_{y 0}-v_{\text {term }}\right) \tau\left(1-e^{-t / \tau}\right) \\
y(x)=\frac{v_{y 0}+v_{\text {term }}}{v_{x 0}} x+v_{\text {term }} \tau \ln \left(1-\frac{x}{v_{x 0} \tau}\right)
\end{gathered}
$$

What is the range (R) of a projectile? Find $y(R)=0$. Are you ready? ...

$$
\begin{aligned}
& y(x)=\frac{v_{y 0}+v_{\text {term }}}{v_{x 0}} x+v_{\text {term }} \tau \ln \left(1-\frac{x}{v_{x 0} \tau}\right)=0 \\
& \ln (1+z)=z-z^{2} / 2+z^{3} / 3-z^{4} / 4 \rightarrow \\
& \ln (1-z)=-z-z^{2} / 2-z^{3} / 3-\ldots=-\left(z+z^{2} / 2+z^{3} / 3+\ldots\right) \\
& \frac{v_{y 0}+v_{\text {term }}}{v_{x 0}} R-v_{\text {term }} \tau\left[\frac{R}{v_{x 0} \tau}+\frac{1}{2}\left(\frac{R}{v_{x 0} \tau}\right)^{2}+\frac{1}{3}\left(\frac{R}{v_{x 0} \tau}\right)^{3}+\ldots\right]=0 \\
& \frac{v_{y 0}+v_{\text {term }}}{v_{x 0}}-v_{\text {term }} \tau\left[\frac{1}{v_{x 0} \tau}+\frac{1}{2} \frac{R}{v_{x 0}^{2} \tau^{2}}+\frac{1}{3} \frac{R^{2}}{v_{x 0}^{3} \tau^{3}}+\ldots\right]=0 \\
& \frac{v_{y 0}+v_{\text {term }}}{v_{x 0}}-\frac{v_{\text {term }} \tau}{v_{x 0} \tau}-v_{\text {term }} \tau\left[\frac{1}{2} \frac{R}{v_{x 0}^{2} \tau^{2}}+\frac{1}{3} \frac{R^{2}}{v_{x 0}^{3} \tau^{3}}+\ldots\right]=0 \\
& \frac{v_{y 0}}{v_{x 0}}-v_{\text {term }} \tau\left[\frac{1}{2} \frac{R}{v_{x 0}^{2} \tau^{2}}+\frac{1}{3} \frac{R^{2}}{v_{x 0}^{3} \tau^{3}}+\ldots\right]=0 \\
& \frac{v_{y 0}}{v_{\text {term }} \tau v_{x 0}}=\frac{1}{2} \frac{R}{v_{x 0}^{2} \tau^{2}}+\frac{1}{3} \frac{R^{2}}{v_{x 0}^{3} \tau^{3}} \\
& \text { Ignore } \\
& \text { negative } \xrightarrow{R=\frac{3 v_{x 0} \tau}{2}}\left[\frac{-1}{2} \pm \sqrt{\frac{1}{4}+\frac{4 v_{y 0}}{3 v_{\text {term }}}}\right] \\
& \text { quadratic } \\
& \text { equation }
\end{aligned}
$$

Follow Taylor, too

$$
R=\frac{3 v_{x 0} \tau}{2}\left[\frac{-1}{2}+\sqrt{\frac{1}{4}+\frac{4 v_{y 0}}{3 v_{\text {term }}}}\right]
$$

Now assume drag force is small, so $v_{y 0} \ll v_{\text {term }} \ldots$

$$
\begin{gathered}
R=\frac{3 v_{x 0} \tau}{2}\left[\frac{-1}{2}+\sqrt{\frac{1}{4}\left(1+\frac{16 v_{y 0}}{3 v_{\text {term }}}\right)}\right] \\
R=\frac{3 v_{x 0} \tau}{2}\left[\frac{-1}{2}+\frac{1}{2} \sqrt{1+\frac{16 v_{y 0}}{3 v_{\text {term }}}}\right] \\
(1+z)^{n} \sim 1+n z+\frac{n(n-1)}{2} z^{2} \text { for small z } \\
R=\frac{3 v_{x 0} \tau}{2}\left[\frac{-1}{2}+\frac{1}{2}\left(1+\frac{8 v_{y 0}}{3 v_{\text {term }}}-\frac{1}{8} \frac{16^{2} v_{y 0}^{2}}{3^{2} v_{\text {term }}^{2}}\right)\right] \\
R=\frac{3 v_{x 0} \tau}{2}\left(\frac{4 v_{y 0}}{3 v_{\text {term }}}-\frac{16 v_{y 0}^{2}}{9 v_{\text {term }}^{2}}\right)
\end{gathered}
$$

Remember that $\tau=m / b$ and $v_{\text {term }}=m g / b$

$$
\begin{gathered}
R=\frac{2 v_{x 0} v_{y 0}}{g}-\frac{8 v_{x 0} v_{y 0}^{2}}{3 g v_{\text {term }}} \\
R=\frac{2 v_{x 0} v_{y 0}}{g}\left(1-\frac{4 v_{y 0}}{3 v_{\text {term }}}\right)
\end{gathered}
$$

How does this

 compare with nodrag answer?

Phew

位 ． （
\qquad
（

[^0]

$+$
$+$ ．
 （

[^1]

Quadratic air resistance / drag

For larger objects, quadratic drag/air resistance is more the norm than linear version (which is easier to solve)

Make sure to read Taylor 2.1 discussion of this...

$$
\begin{array}{cc}
m \dot{v}_{x}=-c v_{x}^{2} & \\
m \frac{d v}{d t}=-c v^{2} & \\
m \frac{d v}{v^{2}}=-c d t \\
\int_{v_{0}}^{v} m \frac{d v^{\prime}}{v^{\prime 2}}=\int_{0}^{t}-c d t^{\prime} & \text { Separation of } \\
m \int_{v_{0}}^{v} \frac{d v^{\prime}}{v^{\prime 2}}=-c t & \text { variables is another } \\
-m\left[1 / v^{\prime}\right]_{v_{0}}^{v}=-c t & \text { trick we will use many } \\
m\left(\frac{1}{v}-\frac{1}{v_{0}}\right)=c t &
\end{array}
$$

Finishing off the algebra

$$
\begin{aligned}
& m \dot{v}_{x}=-c v_{x}^{2} \\
& m\left(\frac{1}{v}-\frac{1}{v_{0}}\right)=c t \\
& \frac{1}{v}=\frac{c t}{m}+\frac{1}{v_{0}} \\
& \frac{1}{v}=\frac{m+v_{0} c t}{m v_{0}} \\
& v(t)=\frac{m v_{0}}{m+v_{0} c t} \\
& v(t)=\frac{v_{0}^{2}}{1+v_{0} c t / m} \\
& v(t)=\frac{v_{0}}{1+t / \tau}, \tau=\frac{m}{c v_{0}}
\end{aligned}
$$

bu

Finishing off the algebra

$$
\begin{array}{cl}
v(t)=d x / d t=\frac{v_{0}}{1+t / \tau} & \\
d x=d t \frac{v_{0}}{1+t / \tau} & \\
\int_{x_{0}}^{x} d x^{\prime}=\int_{0}^{t} d t^{\prime} \frac{v_{0}}{1+t^{\prime} / \tau} & \text { To ponder... } \\
x-x_{0}=v_{0} \int_{0}^{t} \frac{d t^{\prime}}{1+t^{\prime} / \tau} & \text { what does this } \\
z=1+t^{\prime} / \tau, d t^{\prime}=\tau d z & \text { approach as } \\
x-x_{0}=\tau v_{0} \int_{1}^{1+t / \tau} \frac{d z}{z} & \text { gets small? force } \\
x-x_{0}=\tau v_{0}[\log z]_{1}^{1+t / \tau} & \\
x=x_{0}+\tau v_{0} \log (1+t / \tau)-\log (1)=\tau v_{0} \log (1+t / \tau) \\
x=x_{0}+v_{0} \tau \log (1+t / \tau) &
\end{array}
$$

$$
\begin{gathered}
m \dot{v}=m g-c v^{2} \\
\dot{v}=g-(c / m) v^{2} \\
\dot{v}=0 \rightarrow v_{\text {ter }}=\sqrt{\frac{m g}{c}} \\
\dot{v}=g\left[1-\left(\frac{v}{v_{\text {ter }}}\right)^{2}\right] \\
\frac{d v}{d t}=g\left[1-\left(\frac{v}{v_{\text {ter }}}\right)^{2}\right] \\
\frac{d v}{\left[1-\left(\frac{v}{v_{\text {ter }}}\right)^{2}\right]}=g d t \\
\int_{v_{0}}^{v} \frac{d v^{\prime}}{\left[1-\left(\frac{v^{\prime}}{v_{\text {ter }}}\right)^{2}\right]}=\int_{0}^{t} g d t^{\prime}
\end{gathered}
$$

Just want to sketch results here - we won't go over them in detail now (doesn't teach you much)

$$
\int_{v_{0}}^{v} \frac{d v^{\prime}}{\left[1-\left(\frac{v^{\prime}}{v_{\text {ter }}}\right)^{2}\right]}=\int_{0}^{t} g d t^{\prime}
$$

Taylor's cover gives the answer to that integral $=$ arctanh. Or....

The integral is some function, arctanh of the velocity $=$ time, so need to invert it to get velocity as a function of time

$$
\begin{aligned}
& \int_{v_{0}}^{v} \frac{d v^{\prime}}{\left[1-\left(\frac{v^{\prime}}{v^{\prime} \operatorname{ter}}\right)^{2}\right]}=\int_{0}^{t} g d t^{\prime} \\
& \frac{1}{2} \int_{v_{0}}^{v} \frac{d v^{\prime}}{1+v^{\prime} / v_{t}}+\frac{d v^{\prime}}{1-v^{\prime} / v_{t}}=g t \\
& z=1+v^{\prime} / v_{t}, d v^{\prime}=v_{t} d z \\
& q=1-v^{\prime} / v_{t}, d v^{\prime}=-v_{t} d q \\
& \frac{v_{t}}{2}\left[\int_{1+v_{0} / v_{t}}^{1+v / v_{t}} \frac{d z}{z}-\int_{1-v_{0} / v_{t}}^{1-v / v_{t}} \frac{d q}{q}\right]=g t \\
& \frac{v_{t}}{2}\left[[\ln (z)]_{1+v_{0} / v_{t}}^{1+v / v_{t}}-[\ln (q)]_{1-v_{0} / v_{t}}^{1+v / v_{t}}\right]=g t \\
& \frac{v_{t}}{2}\left[\ln \left(1+v / v_{t}\right)-\ln \left(1+v_{0} / v_{t}\right)+\ln \left(1-v_{0} / v_{t}\right)-\ln \left(1-v / v_{t}\right)\right]=g t \\
& \ln \left(\frac{1+v / v_{t}}{1-v / v_{t}}\right)+\ln \left(\frac{1-v_{0} / v_{t}}{1+v_{0} / v_{t}}\right)=2 g t / v_{t} \\
& \ln \left(\frac{1+v / v_{t}}{1-v / v_{t}}\right)=2 g t / v_{t}+\ln \left(\frac{1+v_{0} / v_{t}}{1-v_{0} / v_{t}}\right) \\
& \left(1+v / v_{t}\right) /\left(1-v / v_{t}\right)=\left(1+v_{0} / v_{t}\right) /\left(1-v_{0} / v_{t}\right) e^{2 g t / v_{t}} \\
& \frac{2}{1-v / v_{t}}-1=\left(\frac{2}{1-v_{0} / v_{t}}-1\right) e^{2 g t / v_{t}} \\
& v=v_{t} \frac{\frac{1+v_{0} / v_{t}}{1-v_{0} / v_{t}} e^{2 g t / v_{t}}-1}{\frac{1+v_{0} / v_{t}}{1-v_{0} / v_{t}} e^{2 g t / v_{t}}+1} \\
& v=v_{t}\left[\frac{v_{0}\left(e^{2 g t / v_{t}}+1\right)+v_{t}\left(e^{2 g t / v_{t}}-1\right)}{v_{0}\left(e^{2 g t / v_{t}}-1\right)+v_{t}\left(e^{2 g t / v_{t}}+1\right)}\right]
\end{aligned}
$$

Note that answer

 in Taylor starts with $v_{0}=0$ (in which case answer simplifies quite a bit!) Recommend you make sure when this is posted that you follow all of this$$
v=v_{t}\left[\frac{v_{0}\left(e^{2 g t / v_{t}}+1\right)+v_{t}\left(e^{2 g t / v_{t}}-1\right)}{v_{0}\left(e^{2 g t / v_{t}}-1\right)+v_{t}\left(e^{2 g t / v_{t}}+1\right)}\right]
$$

After

changing
variables, one
Let's assume that $v_{0}=0$ (makes life a lot easier)

$$
\begin{gathered}
\frac{d y}{d t}=v(t)=\frac{v_{t}\left(e^{2 g t / v_{t}}-1\right)}{\left(e^{2 g t / v_{t}}+1\right)}=v_{t} \tanh \left(g t / v_{t}\right) \\
\int d y=\int v_{t} \tanh \left(g t^{\prime} / v_{t}\right) d t^{\prime} \\
y=\frac{v_{t}^{2}}{g} \ln \left[\cosh \left(\frac{g t}{v_{t}}\right)\right]
\end{gathered}
$$

of those integrals you look up (online, in mathematical physics book... or Taylor cover)

Aside on hyperbolic functions

Taken shamelessly from Wikipedia, these are useful to know (derivatives and integrals are in the front cover of your favorite book)

The hyperbolic functions are:

- Hyperbolic sine:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}=\frac{e^{2 x}-1}{2 e^{x}}=\frac{1-e^{-2 x}}{2 e^{-x}}
$$

- Hyperbolic cosine:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}=\frac{e^{2 x}+1}{2 e^{x}}=\frac{1+e^{-2 x}}{2 e^{-x}}
$$

- Hyperbolic tangent:

$$
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}=\frac{1-e^{-2 x}}{1+e^{-2 x}}
$$

Work on problem 2.8 in small groups or on your own (and then we'll go over it together)

Example 2.5 and then Problem 2.23

How about projectiles with quadratic drag?

$m \ddot{\mathbf{r}}=m \mathbf{g}-c v^{2} \hat{\mathbf{v}} \quad$ Newton's second law.

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{v}
$$

$$
m \ddot{\mathbf{r}}=m \mathbf{g}-c v \mathbf{v}
$$

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

$$
m \dot{\mathbf{v}}=m \mathbf{g}-c \mathbf{v} \sqrt{v_{x}^{2}+v_{y}^{2}}
$$

$$
m \dot{v}_{x}=-c v_{x} \sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Note the coupled equations. This cannot be solved

$$
m \dot{v}_{y}=-m g-c v_{y} \sqrt{v_{x}^{2}+v_{y}^{2}}
$$ analytically!

We'll learn how to use computers to solve such problems in your HW assignment (which we'll open now) based on Taylor 2.43

[^0]: \square

[^1]: \square

