Back to our fun example

We know that this
tennis ball will not
accelerate forever -
friction must slow down
the acceleration!




Some things to think about re: air resistance

e Typically assume that air resistance (ie drag) is
along the direction of the velocity vector
(typically pointing away from it)

* As mentioned in Taylor, not always true, but
largely true, and simplifies equations

fdrag — —f(U)V
f(v) = bv + cv?

T~

Related to viscosity Related to density
of medium (inertia) of medium



Equations of motion for projectile with linear air resistance




Starting off in easier dimension (no gravity or other Fext)

. =-bv
mv, = —bv, «—

We will solve lots of differential equations in this course.
Exponentials are a good guess for solutions when
derivatives of a function are some constant times itself

Ve = —kvg, k =b/m
vy (t) = Ae ™
v2(0) =vg = Ae’ = A

v (t) = voe * = vge V7 (1 = 1/k)



Starting off in easier dimension (no gravity or other Fext)

v (t) = voe * = vpe VT = dx/dt

dr = voe_t/'rdt

/dm — /voe_t /T dt!

:E—xozvo/ e /T dt’
0

N\

Always get a constant of integration



Starting off in easier dimension (no gravity or other Fext)

t'=t
L — Lo — Uo/
t’=0

e—t//Tdt/

qg=—t'/1,dg=—dt' /T — dt' = —7dq

L — Xog — — VT

L — Xo — — VT

T = x9+ voT|

(S
e 7 —1]
_ e—t/T]

q=t/T
r— Ty = —?J()T/ eqdq\
q=0

We will
change lots
of variables
In
iIntegrations
this
semester :)



Looking at the solution some more

First of many
Taylor expansions =

r=1x9+ v7|[l — e_t/T]
when ¢ — 0o, exponential small
xr ~ To+ UgT

when drag small, b ~ 0, 7 — o0
. 2 23
e"=14+or+ -+ 5+

2! 31 S 14

x ~xg+vT|l — (1 —t/7)] ~ 20 + Vot

Good to observe expected
behavior in limits!

1+1.5%0.5"(exp(-t/0.5)

1.5%exp(-t/0.5)

4 wo=15
7=0.5
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Now let's add gravity

mv = mgqg — bv

v=g— (b/m)v
. mg e=—g
U =0 = Vterminal = S

Pay attention to sign of v!
Gravity accelerates the
ball until:

drag force = grav. force
At that point,

a terminal velocity is
reached




Now let's add gravity

We just solved this
differential equation!

u(t) = uge "

v(t) — Vterm = Ae™ M7

v(0) — Vtorm = A = A =5 A=y — Vterm

v(t) — Uterm = (vo — Uterm)e_t/T

v(t) = Vgerm + (Vo — Uterm)e_t/T




Plug and Chug...

—t/T

= dy/dt = Uterm T (vo Uterm)e

/ dy’ _/ Vterm + (V0 — Vperm)e "/ Tdt’
Yo

t
0

z=—t'/7,dz = —dt'/7,dt' = —7d=z
—t/T

Y — Yo = Vterm?! + (vo — 'Uterm)(_T) / e”dz
0
—t/T

Y — Yo = Vtermt + (vo — ’Uterm)(_T)[ez]o
Y — Yo = Vtermt + (vo — Uterm)(_T)(e_t/T —1)

Y = Yo + Vterm? + (vo — Uterm)T(l - e_t/T)



Let’s again consider what happens in extremes

v(t) = Uterm T+ (vo — Uterm)e_t/T

when t — 00, exponential small

v(00) ~ Uterm



Let’s again consider what happens in extremes

Y = Yo + Vtermt + (Vo — Vterm)T(1 — e_t/T)
when drag small, b ~ 0, 7 — o0

x? oz
€x=1+$—|—§—|‘§—|—...
2
Y = Yo + Vterm? + (vo — Vterm)7[1 — (1 —¢/7 + ﬁ)]
42
Y = Yo + Vtermt + (Vo — Vterm)TIE/T — ﬁ)]
42
Y = Yo + Vterm!? + (vo — Uterm)(t - Z)

t2
Y = Yo + vot + E(Uterm — vp)

for small drag, vo < Vierm and remember that 7 = m/b, Vterym = Mmg/b
2 2
t

bt
Y = 1o + vot + ——(mg/b) = yo + vot + 2
2m 2



What happens

If we throw the projectile with
initial velocity downward
greater than the terminal
velocity? (Problem 2.5 in

Taylor)



Projectiles

x(t) = vo7|l — e_t/T]
y(t) = Uterm? + (vo — Uterm)T(l — e_t/T)

Let’'s take a moment
here to check units
and see If that makes

Sense



Projectiles

As Taylor points out,
for projectiles, it's
perhaps better to flip
the sign of vt (is that
obvious why?)



Projectiles

2(t) = vgoT[l — e V7]

y(t) = Uterm? + (UyO - Uterm)T(l - e_t/T)

Uyo T Vterm L
T) = T + Vterm Inl1
/( ) ?Jw() ter ' ( 'Ux()7->

Invert x(t) to solve for t(x) and then plug in, let’'s do
these first steps together before some nasty algebra

As Taylor points out,
for projectiles, it's
perhaps better to flip
the sign of v; (is that
obvious why?)




Projectiles

2(t) = vgoT[l — e V7]
y(t) = Uterm? T (UyO — Uterm)T(l — e_t/T)

Vyo + U
y(x) = yotj Oterml. Vterm T I (1

What is the range (R)
of a projectile? Find
y(R) = 0. Are you
ready? ...




Projectiles (lots of algebra here...)

y(z) = Uyo +Utermx + Upepm T In (1 @ ) _ 0

Vz0 Vz0T
In(l+2)=2—-22/2+23/3—2%/4 =
In(l—2)=—2-2°/2—2°/3—...=—(24+2*/2+2°/3+..)
2 3 : :
Uyo 1 Vterm R 1/ R 1/ R - >
R - - -~ - coe — O IStance traveiec
Va0 Vterm” (I i 2 \vp0T i 3 \vgoT i S | R
Uy0 + Vterm 1 1 R 1 R _
e — UtermT [%07_ 202,72 | 3ui 3 +...| =0 SOlVG fOr
Uyo + Vterm _ Yterm7 _ v - 1 R 1 R? I — R — range
Vz0 Vg0T term 2 /U207_2 3 1}207-3
Vyo 1 R 1R, ) R=0
— — T|=—5—+ = =
(trivial)

Uy0 o 1 R i 1 RQ
VtermTVz0 2 032;07'2 3 v§07'3 \

Ignore 5.1 T w Solve
e E drat
negative 2 12 V4 3em] quadratic
Beor [ =1, [T vy equation
R = 2 2 +\/Z+3Uterm_ q

solution ' Follow Taylor, too



Projectiles (finishing the algebra)

30, 1 1 Av.a | geeeeennnenees
R="20 10 oy 0 5
2 2 4 3vterm 3
Now assume drag force is small, so v,0 < Vterm-- Vo g
3vg0T | —1 1 16 -
R="200 | =y )2 (1 4 w0 ) 5
2 2 4 3’Uterm & Distance trave ed>

3”03307' —1 1 16’Uy() R
R= + o1+
2 2 2 3Vterm
—1
(L+2)" ~ 1+nz+n(nT)

2,2
j 30T [1+l <1+ 8vy0 1 16 Vo )]

22 for small z

2 |2 2 Bvterm 8 3202, :
P How does this
== <3vt§rm - 9vgefm> compare with no-
Remember that 7 = m/b and vzerm =mg/b d rag answe r?
n_ ZUxOUyO B 8vx0vy0
g 39Vterm

R— QU:EO'UyO (1 _ 4Uy() )
g 3Vterm






Quadratic air resistance / drag

For larger objects,
quadratic drag/air
resistance Is more
the norm than linear
version (which is
easier to solve)

Make sure to read
Taylor 2.1
discussion of this...




Starting off in easier dimension (no gravity or other Fext)

— t\
v d / t -
mv% :/ o Separation of

variables is another

Cdv trick we will use many
m 5 —ct i ]
vo U times this course
/7v
—m[l/v'], = —ct
1 1
m(-~——)=c



Finishing off the algebra

Mmuv, = —CU —_cV2




Finishing off the algebra

v(t) = dx/dt = Ty
dz = dt —2°
1+t/7
T t
dz' = / dt' —°
/xo S T To ponder...
/t dt’ what does this
X — g —7
P, 1+t approach as
p=1+t/7,dt' = 1dz drag force
/1+t/T dz gets small?
I — Xog— TV -
1 <

r — xg = TUg|log z]iH/T

x = x0 + Tvglog (1 +t/7) —log(1) =/Tvolog (1 +t/7)
X :$0+00710g(1+t/7)



Now back to this

mi = mgqg — cv?

v =g — (c/m)v?

0= 0 — vpp = ?
v
Uzg[l—(v—)Z]
ter
dv v
~ — g1 = (——)?
e Ol
d
Uv 5 = gdt
-G
er




Prepared again?

Just want to sketch
results here - we
won't go

over them In detall
now (doesn’t teach
you much)




The easy version of the math

/ = ? 7 /0 g

“ter
Taylor’s cover gives the answer to that integral = arctanh. Or....

The integral is some function,
arctanh of the velocity = time, so

need to invert it to get velocity as a
function of time



The less easy version of the math

/ T / g

“ter
1/ dv dv’
5/1)0 L4+ /vy T 1—v" /vy =gt
z=1+v"/vy,dv' = vdz
q=1—2"/v;,dv' = —vdq

E /1—}—’0/’Ut @ —/1—U/Ut @ :gt
2 14wvo /vy < 1—wo /vy q

v 14v /vy 1+v /vy
5 (e, - @y, ] = o

% In(14+v/vy) — In(1 4+ vo/v¢) + In(1 — vg/vg) — In(1 — v/vy)] = gt

14+ v/vg 1 — vg /vy
1 1 = 2gt
n(l—v/vt)+ n(1+vo/’vt) gt/ v
1
1n<1+”/“t)zzgt/vt+1n( +”0/”t)

1—v/v 1— v /v
(1+v/v)/(L—v/v) = (1+v0/v;) /(1 — vo /vy) e/

2 - 2 ) et/
1 —v/v 1 — vo /vy

1tvo/ve J2gt/ve _ q
1—vg/v
6] t

V = V¢
1+U0/vt 2gt /vy
l—vo/vte +1

[vo(e29t/”t + 1) + vy (e29t/ve — 1)]
V = V¢

Note that answer
In Taylor starts
with vo = 0 (in
which case
answer simplifies
quite a bit!)
Recommend you
make sure when
this Is posted that
you follow all of
this



What about the position”?

After
hangin
B 00(629’5/% + 1)+ Ut(ezgt/’l)t —1) C a gl g
V= Uy vo(€298/v0 — 1) + v, (e291/ve 1 1) variapies, one

Let’s assume that vg = 0 (makes life a lot easier) Of those
dy (et — 1) integrals you
i v(t) = (7% 1 1) = vy tanh(gt /v;) look up

[av= [ vetann(ot oy __— (0nline, in

mathematical

Y = ?i; In lcosh (f}f)] phySiCS
book... or
Taylor cover)




Aside on hyperbolic functions

Taken shamelessly from Wikipedia,
these are useful to know (derivatives
and integrals are in the front cover of
your favorite book)

The hyperbolic functions are:

» Hyperbolic sine:

e — e~ % 6‘21". = 1 1 = 6-21'.
sinhx = = =

2 2e” 267
» Hyperbolic cosine:

ex 4 e—x e?.:c. +1 1+€—21:
coshx = = =

2 2e® 2e~%
» Hyperbolic tangent:
simhzr e*T—e®* e*-1 11—

2
coshr e*+e* e24+1 14e 2

tanhz =



Work on problem 2.8 in small
groups or on your own (and
then we’ll go over it together)



Let’'s go over ...

Example 2.5 and then
Problem 2.23



How about projectiles with quadratic drag?

mr = mg — cv2v Newton’s second law.

v \ And drag is.always

\Y along velocity vector

0 \ (in opposite direction)
mr = mg — cuv _ .

Definition of unit
Y — \/v% _|_,U§ vector

MV = mg — cv4/vz + vg
Note the coupled

- 2 2 equations. This
muv, — —CU VE T+ (Uy
T x > cannot be solved

analytically!

L= _ 2 2
Mvy = —Mg — CUy\/ UV T U



How about projectiles with quadratic drag?

We’'ll learn how to
use computers to
solve such
problems in your
HW assignment
(which we’ll open
now) based on
Taylor 2.43




