
62Back to our fun example

We know that this 
tennis ball will not 

accelerate forever - 
friction must slow down 

the acceleration!



63Some things to think about re: air resistance

• Typically assume that air resistance (ie drag) is 
along the direction of the velocity vector 
(typically pointing away from it)
• As mentioned in Taylor, not always true, but 

largely true, and simplifies equations

fdrag = �f(v)v

f(v) = bv + cv2

Related to viscosity
of medium

Related to density 
(inertia) of medium



64Equations of motion for projectile with linear air resistance

mr̈ = mg � bv = mv̇

mv̇
x

= �bv
x

mv̇
y

= mg � bv
y

mv̇
z

= �bv
z



65Starting off in easier dimension (no gravity or other Fext)

Amtrak vf=-bv

v̇
x

= �kv
x

, k = b/m

v
x

(t) = Ae�kt

v
x

(0) = v0 = Ae0 = A

v
x

(t) = v0e
�kt = v0e

�t/⌧ (⌧ = 1/k)

We will solve lots of differential equations in this course. 
Exponentials are a good guess for solutions when 
derivatives of a function are some constant times itself

mv̇
x

= �bv
x



66Starting off in easier dimension (no gravity or other Fext)

v

x

(t) = v0e
�kt = v0e

�t/⌧ = dx/dt

dx = v0e
�t/⌧

dt

Z
dx =

Z
v0e

�t

0
/⌧

dt

0

x� x0 = v0

Z
t

0
e

�t

0
/⌧

dt

0

Always get a constant of integration



67Starting off in easier dimension (no gravity or other Fext)

We will 
change lots 
of variables 
in 
integrations 
this 
semester :)

x� x0 = v0

Z t0=t

t0=0
e

�t0/⌧
dt

0

q = �t

0
/⌧, dq = �dt

0
/⌧ ! dt

0 = �⌧dq

x� x0 = �v0⌧

Z q=t/⌧

q=0
e

q
dq

x� x0 = �v0⌧ [e
q]q=�t/⌧

q=0

x� x0 = �v0⌧ [e
�t/⌧ � 1]

x = x0 + v0⌧ [1� e

�t/⌧ ]



68Looking at the solution some more

Good to observe expected 
behavior in limits!

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x(
t)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1+1.5*0.5*(exp(-t/0.5)

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

v(
t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5*exp(-t/0.5)

x0 = 1
v0 = 1.5
! = 0.5

v0 = 1.5
! = 0.5

First of many
Taylor expansions

x = x0 + v0⌧ [1� e

�t/⌧

]

when t ! 1, exponential small

x ⇠ x0 + v0⌧

when drag small, b ⇠ 0, ⌧ ! 1

e

x

= 1 + x+

x

2

2!

+

x

3

3!

+ ...

x ⇠ x0 + v0⌧ [1� (1� t/⌧)] ⇠ x0 + v0t



69Now let’s add gravity

mg

-bv

Pay attention to sign of v!
Gravity accelerates the 
ball until:
drag force = grav. force
At that point,
a terminal velocity is 
reached

mv̇ = mg � bv

v̇ = g � (b/m)v

v̇ = 0 ! vterminal =
mg

b



70Now let’s add gravity

mg

-bv
mv̇ = mg � bv

mv̇ = �b(v � v
ter

)

let u = (v � v
ter

), u̇ = v̇ so

mu̇ = �bu

We just solved this 
differential equation!

u(t) = u0e
�t/⌧

v(t)� vterm = Ae�t/⌧

v(0)� vterm = Ae0 = A ! A = v0 � vterm

v(t)� vterm = (v0 � vterm)e�t/⌧

v(t) = vterm + (v0 � vterm)e�t/⌧



71Plug and chug...

v(t) = dy/dt = vterm + (v0 � vterm)e�t/⌧

Z y

y0

dy0 =

Z t

0
vterm + (v0 � vterm)e�t0/⌧dt0

y � y0 = vtermt+ (v0 � vterm)

Z t

0
e�t0/⌧dt0

z = �t0/⌧, dz = �dt0/⌧, dt0 = �⌧dz

y � y0 = vtermt+ (v0 � vterm)(�⌧)

Z �t/⌧

0
ezdz

y � y0 = vtermt+ (v0 � vterm)(�⌧)[ez]�t/⌧
0

y � y0 = vtermt+ (v0 � vterm)(�⌧)(e�t/⌧ � 1)

y = y0 + vtermt+ (v0 � vterm)⌧(1� e�t/⌧ )



72Let’s again consider what happens in extremes

v(t) = v
term

+ (v0 � v
term

)e�t/⌧

when t ! 1, exponential small

v(1) ⇠ v
term



73Let’s again consider what happens in extremes

y = y0 + v

term

t+ (v0 � v

term

)⌧(1� e

�t/⌧

)

when drag small, b ⇠ 0, ⌧ ! 1

e

x

= 1 + x+

x

2

2!

+

x

3

3!

+ ...

y = y0 + v

term

t+ (v0 � v

term

)⌧ [1� (1� t/⌧ +

t

2

2⌧

2
)]

y = y0 + v

term

t+ (v0 � v

term

)⌧ [t/⌧ � t

2

2⌧

2
)]

y = y0 + v

term

t+ (v0 � v

term

)(t� t

2

2⌧

)

y = y0 + v0t+
t

2

2⌧

(v

term

� v0)

for small drag, v0 ⌧ v

term

and remember that ⌧ = m/b, v

term

= mg/b

y = y0 + v0t+
bt

2

2m

(mg/b) = y0 + v0t+
gt

2

2



74What happens

If we throw the projectile with 
initial velocity downward 
greater than the terminal 
velocity? (Problem 2.5 in 
Taylor)



75Projectiles

x(t) = v0⌧ [1� e

�t/⌧ ]

y(t) = vtermt+ (v0 � vterm)⌧(1� e

�t/⌧ )

Let’s take a moment 
here to check units 
and see if that makes 
sense



76Projectiles

x(t) = v0⌧ [1� e

�t/⌧ ]

y(t) = vtermt+ (v0 � vterm)⌧(1� e

�t/⌧ )

As Taylor points out, 
for projectiles, it’s 
perhaps better to flip 
the sign of vt (is that 
obvious why?)



77Projectiles

As Taylor points out, 
for projectiles, it’s 
perhaps better to flip 
the sign of vt (is that 
obvious why?)

Invert x(t) to solve for t(x) and then plug in, let’s do 
these first steps together before some nasty algebra

x(t) = v

x0⌧ [1� e

�t/⌧ ]

y(t) = vtermt+ (v
y0 � vterm)⌧(1� e

�t/⌧ )

y(x) =
v

y0 + vterm
v

x0
x+ vterm⌧ ln

✓
1� x

v

x0⌧

◆



78Projectiles

What is the range (R) 
of a projectile? Find 
y(R) = 0. Are you 
ready? ...

x(t) = v

x0⌧ [1� e

�t/⌧ ]

y(t) = vtermt+ (v
y0 � vterm)⌧(1� e

�t/⌧ )

y(x) =
v

y0 + vterm
v

x0
x+ vterm⌧ ln

✓
1� x

v

x0⌧

◆



79Projectiles (lots of algebra here...)

Solve for 
R = range

v0

R

R=0 
(trivial)

Solve 
quadratic 
equation

Follow Taylor, too

Ignore 
negative
R 
solution

y(x) =
v

y0 + vterm
v

x0
x+ vterm⌧ ln

✓
1� x

v

x0⌧

◆
= 0

ln(1 + z) = z � z

2
/2 + z

3
/3� z

4
/4 !

ln(1� z) = �z � z

2
/2� z

3
/3� ... = �(z + z

2
/2 + z

3
/3 + ...)

v

y0 + vterm
v

x0
R� vterm⌧

"
R

v

x0⌧
+

1

2

✓
R

v

x0⌧

◆2

+
1

3

✓
R

v

x0⌧

◆3

+ ...

#
= 0

v

y0 + vterm
v

x0
� vterm⌧


1

v

x0⌧
+

1

2

R

v

2
x0⌧

2
+

1

3

R

2

v

3
x0⌧

3
+ ...

�
= 0

v

y0 + vterm
v

x0
� vterm⌧

v

x0⌧
� vterm⌧


1

2

R

v

2
x0⌧

2
+

1

3

R

2

v

3
x0⌧

3
+ ...

�
= 0

v

y0

v

x0
� vterm⌧


1

2

R

v

2
x0⌧

2
+

1

3

R

2

v

3
x0⌧

3
+ ...

�
= 0

v

y0

vterm⌧v

x0
=

1

2

R

v

2
x0⌧

2
+

1

3

R

2

v

3
x0⌧

3

R =
3v

x0⌧

2

"
�1

2
±

s
1

4
+

4v
y0

3vterm

#

R =
3v

x0⌧

2

"
�1

2
+

s
1

4
+

4v
y0

3vterm

#



80Projectiles (finishing the algebra)

v0

R

How does this 
compare with no-
drag answer?

R =

3v
x0⌧

2

"
�1

2

+

s
1

4

+

4v
y0

3v
term

#

Now assume drag force is small, so v
y0 ⌧ v

term

...

R =

3v
x0⌧

2

"
�1

2

+

s
1

4

✓
1 +

16v
y0

3v
term

◆#

R =

3v
x0⌧

2

"
�1

2

+

1

2

s

1 +

16v
y0

3v
term

#

(1 + z)n ⇠ 1 + nz +
n(n� 1)

2

z2 for small z

R =

3v
x0⌧

2

"
�1

2

+

1

2

 
1 +

8v
y0

3v
term

� 1

8

16

2v2
y0

3

2v2
term

!#

R =

3v
x0⌧

2

 
4v

y0

3v
term

�
16v2

y0

9v2
term

!

Remember that ⌧ = m/b and v
term

= mg/b

R =

2v
x0vy0
g

�
8v

x0v2
y0

3gv
term

R =

2v
x0vy0
g

✓
1� 4v

y0

3v
term

◆



81Phew



82Quadratic air resistance / drag

mg

-cv2
For larger objects, 
quadratic drag/air 
resistance is more 
the norm than linear 
version (which is 
easier to solve)

Make sure to read 
Taylor 2.1 
discussion of this...



83Starting off in easier dimension (no gravity or other Fext)

Amtrak vf=-cv2

m
dv

dt
= �cv2

m
dv

v2
= �cdt

Z v

v0

m
dv0

v02
=

Z t

0
�cdt0

m

Z v

v0

dv0

v02
= �ct

�m[1/v0]vv0 = �ct

m(
1

v
� 1

v0
) = ct

Separation of 
variables is another 
trick we will use many 
times this course

mv̇
x

= �cv2
x



84Finishing off the algebra

Amtrak vf=-cv2mv̇
x

= �cv2
x

m

✓
1

v
� 1

v0

◆
= ct

1

v
=

ct

m
+

1

v0
1

v
=

m+ v0ct

mv0

v(t) =
mv0

m+ v0ct

v(t) =
v0

1 + v0ct/m

v(t) =
v0

1 + t/⌧
, ⌧ =

m

cv0



85Finishing off the algebra
v(t) = dx/dt =

v0

1 + t/⌧

dx = dt

v0

1 + t/⌧

Z
x

x0

dx

0
=

Z
t

0
dt

0 v0

1 + t

0
/⌧

x� x0 = v0

Z
t

0

dt

0

1 + t

0
/⌧

z = 1 + t

0
/⌧, dt

0
= ⌧dz

x� x0 = ⌧v0

Z 1+t/⌧

1

dz

z

x� x0 = ⌧v0[log z]
1+t/⌧

1

x = x0 + ⌧v0 log (1 + t/⌧)� log(1) = ⌧v0 log (1 + t/⌧)

x = x0 + v0⌧ log (1 + t/⌧)

To ponder... 
what does this 
approach as 
drag force 
gets small?



86Now back to this

mg

-cv2
mv̇ = mg � cv2

v̇ = g � (c/m)v2

v̇ = 0 ! vter =

r
mg

c

v̇ = g[1� (
v

vter
)2]

dv

dt
= g[1� (

v

vter
)2]

dv

[1� ( v
vter

)2]
= gdt

Z v

v0

dv0

[1� ( v0

vter
)2]

=

Z t

0
gdt0



87Prepared again?

mg

-cv2

Just want to sketch
results here - we 
won’t go
over them in detail 
now (doesn’t teach 
you much)



88The easy version of the math

The integral is some function, 
arctanh of the velocity = time, so 
need to invert it to get velocity as a 
function of time

Z v

v0

dv0

[1� ( v0

vter
)2]

=

Z t

0
gdt0

Taylor’s cover gives the answer to that integral = arctanh. Or....



89The less easy version of the math

Note that answer 
in Taylor starts 
with v0 = 0 (in 
which case 
answer simplifies 
quite a bit!) 
Recommend you 
make sure when 
this is posted that 
you follow all of 
this

Z v

v0

dv0

[1� ( v0

vter
)2]

=

Z t

0
gdt0

1

2

Z v

v0

dv0

1 + v0/vt
+

dv0

1� v0/vt
= gt

z = 1 + v0/vt, dv
0 = vtdz

q = 1� v0/vt, dv
0 = �vtdq

vt
2

"Z 1+v/vt

1+v0/vt

dz

z
�

Z 1�v/vt

1�v0/vt

dq

q

#
= gt

vt
2

h
[ln(z)]1+v/vt

1+v0/vt
� [ln(q)]1+v/vt

1�v0/vt

i
= gt

vt
2
[ln(1 + v/vt)� ln(1 + v0/vt) + ln(1� v0/vt)� ln(1� v/vt)] = gt

ln

✓
1 + v/vt
1� v/vt

◆
+ ln

✓
1� v0/vt
1 + v0/vt

◆
= 2gt/vt

ln

✓
1 + v/vt
1� v/vt

◆
= 2gt/vt + ln

✓
1 + v0/vt
1� v0/vt

◆

(1 + v/vt)/(1� v/vt) = (1 + v0/vt)/(1� v0/vt)e
2gt/vt

2

1� v/vt
� 1 =

✓
2

1� v0/vt
� 1

◆
e2gt/vt

v = vt

1+v0/vt

1�v0/vt
e2gt/vt � 1

1+v0/vt

1�v0/vt
e2gt/vt + 1

v = vt


v0(e2gt/vt + 1) + vt(e2gt/vt � 1)

v0(e2gt/vt � 1) + vt(e2gt/vt + 1)

�



90What about the position?

After 
changing 
variables, one 
of those 
integrals you 
look up 
(online, in 
mathematical 
physics 
book... or 
Taylor cover)

v = vt


v0(e2gt/vt

+ 1) + vt(e2gt/vt � 1)

v0(e2gt/vt � 1) + vt(e2gt/vt
+ 1)

�

Let’s assume that v0 = 0 (makes life a lot easier)

dy

dt
= v(t) =

vt(e2gt/vt � 1)

(e2gt/vt
+ 1)

= vt tanh(gt/vt)

Z
dy =

Z
vt tanh(gt

0/vt)dt
0

y =

v2t
g

ln


cosh

✓
gt

vt

◆�



91Aside on hyperbolic functions

Taken shamelessly from Wikipedia, 
these are useful to know (derivatives 
and integrals are in the front cover of 
your favorite book)



92And now

Work on problem 2.8 in small 
groups or on your own (and 

then we’ll go over it together)



93Let’s go over ...

Example 2.5 and then 
Problem 2.23



94How about projectiles with quadratic drag?

mr̈ = mg � cv2v̂

v̂ =
v

v
mr̈ = mg � cvv

v =
q
v2
x

+ v2
y

mv̇ = mg � cv
q
v2
x

+ v2
y

mv̇
x

= �cv
x

q
v2
x

+ v2
y

mv̇
y

= �mg � cv
y

q
v2
x

+ v2
y

Newton’s second law. 
And drag is always 
along velocity vector 
(in opposite direction)

Definition of unit 
vector

Note the coupled 
equations. This 
cannot be solved 
analytically!



95How about projectiles with quadratic drag?

We’ll learn how to 
use computers to 
solve such 
problems in your 
HW assignment 
(which we’ll open 
now) based on 
Taylor 2.43


