Counters

- The simplest circuit for binary counting is a multibit divider.

- Each bit toggles on the downward edge of the preceding bit.
- The timing is asynchronous.
- This particular circuit is called a ripple counter.

Transients

- The timing diagram for the ripple counter shows a delay for each transition.

- In a ripple counter at a clock edge each data bit much change before the next higher bit can change.
- The apparent counts that exist during the clock transistion are called transients.

Output Latches

- Transients can be eliminated by using D-type latches on the outputs.

- The ripple counter is updated on the falling edge of the clock.
- The D flip-flops are clocked on the rising edge of the clock, long after the values of all bits are set.
- Transients are suppressed.

Preset Counter

- Logic can preselect the early termination of the count to some value n.

- This circuit divides by 10 . When the clock causes both D_{3} and D_{1} to be high, a clear is sent to all flip-flops. The first case of of this count is at the clock from 9 to 10 .
- Transient problems will affect the operation of this circuit.
- Data latches will help transients here as well.
- The set and clear of the flip-flops can be used to preload a starting count.

Pulse Generator

- This circuit uses a counter to generate a periodic narow pulse.

- Each 74LS163 chip has four internal flip-flops.
- ENT and ENP are the JK inputs for the flip-flops.
- $\overline{\mathrm{LD}}$ is the $\overline{\mathrm{SET}}$ input for the flip-flops.
- The counter is loaded with a value D from $0-255\left(0-\mathrm{FF}_{\mathrm{H}}\right)$. With each clock rising edge the count increases by one. When FF_{H} is reached, RC goes high. This reloads the counter to repeat the cycle. The output is high for one clock cycle and low for 256-D cycles.

Synchronous Counters

- A true synchronous counter requires that all flip-flops be clocked at the same time.

1. Minimize noise since all inputs are well defined
2. Reduce propagation time
3. Eliminate transient counts

- The inputs must have additional logic to control each bit as in the JK divide by 2^{n}.

D_{0} is dividing the input clock by 2 .
D_{1} is dividing the input clock by 4 . It toggles when $D_{0}=1$.
D_{2} is dividing the input clock by 8 . It toggles when $D_{1} \& D_{0}=1$.

Divide by 3

- Other latches can be used to make counters such as this D-type divider.

- The truth table shows that the sequence repeats every 3 clock cycles.

CLK	D_{0}	Q_{0}	D_{1}	Q_{1}	Count
	0	0	1	0	0
$0->1$	1	0	0	1	2
$0->1$	0	1	0	0	1
$0->1$	0	0	1	0	0
$0->1$	1	0	0	1	2

State Digram

\qquad

- A state diagram show the sequence between possible outputs.

- Forbidden states occur when a combination cannot be reached in the sequence.
In the Divide by 3 circuit, $\mathrm{Q}_{0}=1$ and $\mathrm{Q}_{1}=1$ cannot be reached If it occurs, $D_{0}=1$ and $D_{1}=0$ so the next count is 1 .
- Compare to a state diagram for traffic signals.

Registers

- Registers are like latches and have multiple flip-flops on one IC with one clock and clear.
- Typically there is one output (or output pair $\mathrm{Q} / \overline{\mathrm{Q}}$) per input.
- All are designed to "hold" a set of bits.
- A transparent latch is based on RS flip-flops, and passes the input to the output when enabled and hold the output constant when disabled.
- A type-D register is based on D-type flip-flops, and transfers the input to the output only on a specified clock edge.

- Many registers have an enable feature to control whether or not the clock has an effect.
- If not enabled, the register outputs are held constant.

Shift Registers

- A shift register moves a pattern of bits in an array of flip-flops without altering the pattern.
- This version is a Serial In/ Parallel Out (SIPO) register.
- The truth table show the

movement of the bits in the register.

CLK	IN	Q_{0}	Q_{1}	Q_{2}	Q_{3}
	0	0	0	0	0
$0->1$	1	1	0	0	0
$0->1$	1	1	1	0	0
$0->1$	0	0	1	1	0
$0->1$	0	0	0	1	1
$0->1$	0	0	0	0	1

Parallel In/Single Out (PISO)

\qquad

- A PISO register loads a set of bits then shifts them serially. The LD is a logic level that intiates a parallel load of input data.
The CLK handles the shifting.
- In this example truth table the input data is 0110 .

CLK	LD	Q_{0}	Q_{1}	Q_{2}	Q_{3}	OUT
$0->1$	1	0	1	1	0	0
$0->1$	0	0	0	1	1	1
$0->1$	0	0	0	0	1	1
$0->1$	0	0	0	0	0	0
$0->1$	0	0	0	0	0	0

Psuedorandom Noise Generator

\qquad

- A shift register can be used to generate a seemingly random stream of bits.

- If the register begins at 0 , the input continues to be 0 and there is no change of state.
- If the register begins at 1 , that one bit will shift through the register at each clock cycle.
- When it reaches Q_{6} and Q_{7} then those two clocks will input a 1 instead of a 0 to the input.
- Those two consecutive bits clock through and at the end generate a 101 pattern to the input.
- Only after 255 clock cycles does the number 1 reemerge.
- The register generates all values from 1-255 in an arbitrary order that is set by the specific feedback through the XOR gate.

Truth Table with Feedback $Q_{2} @ Q_{3}$

CLK	$\mathrm{Q}_{0}=\mathrm{Q}_{2} @ \mathrm{Q}_{3}$	Q_{1}	Q_{2}	Q_{3}	Count
$0->1$	1	0	0	0	1
$0->1$	0	1	0	0	2
$0->1$	0	0	1	0	4
$0->1$	1	0	0	1	9
$0->1$	1	1	0	0	3
$0->1$	0	1	1	0	6
$0->1$	1	0	1	1	13
$0->1$	0	1	0	1	10
$0->1$	1	0	1	0	5
$0->1$	1	1	0	1	11
$0->1$	1	1	1	0	7
$0->1$	1	1	1	1	15
$0->1$	0	1	1	1	14
$0->1$	0	0	1	1	12
$0->1$	0	0	0	1	8

Truth Table with Feedback $Q_{1} @ Q_{3}$

CLK	$\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{3}$	Q_{1}	Q_{2}	Q_{3}	Count
$0->1$	1	0	0	0	1
$0->1$	0	1	0	0	2
$0->1$	1	0	1	0	5
$0->1$	0	1	0	1	10
$0->1$	0	0	1	0	4
$0->1$	0	0	0	1	8
$0->1$	1	0	0	0	1

- This feedback combination does not go through all 15 possible combinations, but only 7 ,
effectively a 3-bit pseudorandom generator.
There are 6 possible feedback choices for 4 bits:
$\mathrm{Q}_{0}=\mathrm{Q}_{2} @ \mathrm{Q}_{3}$ gives 15 numbers
$\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{3}$ gives 7 numbers
$\mathrm{Q}_{0}=\mathrm{Q}_{0} @ \mathrm{Q}_{3}$ gives 15 numbers
$\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{2}$ gives 7 numbers after 2 is reached
$Q_{0}=Q_{0} @ Q_{2}$ gives 7 numbers after 3 is reached
$\mathrm{Q}_{0}=\mathrm{Q}_{0} @ \mathrm{Q}_{1}$ gives 3 numbers after 6 is reached

State Diagram - Feedback $Q_{1} @ Q_{2}$

- The pseudorandom number generator state diagram shows the forbidden and isolated states.

- The pattern sequence here is 6-13-11, a cycle of 3 . Most starting points end in this cycle.
- Starting points at $4,8,12$ or 0 end up stuck at 0 .

Memory

- Random Access Memory (RAM) is a selectable register.

The basic components of a RAM are

- Input address bits $\left(\mathrm{A}_{\mathrm{i}}\right)$
- Chip select bit $(\overline{\mathrm{CS}})$
- Output enable bit ($\overline{\mathrm{OE})}$
- Write enable bit ($\overline{\mathrm{WE}})$
- Input/Output data bits $\left(\mathrm{D}_{\mathrm{i}}\right)$

Chip select, output enable, and write enable will sometimes come under other names with slightly different function. Some of these include memory enable, read/write, address strobe and data strobe. Strobes mean that the memory is controlled by a clock edge rather than a level.

- RAMs are usually specified by the number of possible addresses $\left(2^{n}\right.$ where n is the number is address bits) by the number of data bits.
- For example a chip with 18 address bits and 8 data bits would be a 256 K x 8 RAM.
- Note that $K=2^{10}=1024$, which is not really 1000 , but it is counted that way. $M=2^{20}$ and is treated as if it were 10^{6}.

Static RAM (SRAM)

- Static RAM uses flip-flops as the basic storage element. The "memory" position of the flip-flop holds the data and new data is inserted by asserting a 1 or 0 at the flip-flop input while it is enabled.
- The entire memory chip is nothing more than a huge array of flip-flops.
- Like any gate circuit, when the power is off, the signals go away, so any data stored would be lost.
- The biggest advantages of SRAMs are speed and simplicity.

SRAM Timing

Battery-Backup SRAM

This is typically designed as an printed circuit card that includes low-power CMOS SRAM and a long-life battery. When the power is off, a special ultra-low power circuit kicks in and preserves the data on the flip-flops.

Dynamic RAM (DRAM)

- Dynamic RAM uses charged capacitors as the basic storage element.
- A capacitor can hold a charge for a time based on the leakage resistance in parallel with the capacitor.
- On a chip this is about $10^{9} \Omega$ With a 10 pf capacitance the leakage time constant is 10 ms .

- DRAMs have the advantage of permitting greater memory density since there is only one FET per bit as opposed to 4 FETs in a gated flip-flop.
- The disadvantage is primarily the added circuitry needed to make sure that the leaking capacitors are repeatedly recharged.
- This requires regular reading and rewriting of all the memory bits on the chip.

Read-Only Memory (ROM)

- ROMs are nonvolatile memory chips.

The transistor in the shaded box either exists or is "burned" leaving an open connection. If the transistor is present a select gives a " 0 ", otherwise it gives a " 1 ".

- They are best used for applications where one wants a hardwired pattern to always be present (eg. startup program sequences, character generators, basic system instructions).
- PROM stands for programmable read-only memory.
- An eraseable PROM (EPROM) has circuitry to undo the burned connection.

