

• The simplest circuit for binary counting is a multibit divider.

- Each bit toggles on the downward edge of the preceding bit.
- The timing is asynchronous.
- This particular circuit is called a ripple counter.

Transients

• The timing diagram for the ripple counter shows a delay for each transition.

- In a ripple counter at a clock edge each data bit much change before the next higher bit can change.
- The apparent counts that exist during the clock transistion are called *transients*.

Output Latches

• Transients can be eliminated by using D-type latches on the outputs.

- The ripple counter is updated on the falling edge of the clock.
- The D flip-flops are clocked on the rising edge of the clock, long after the values of all bits are set.
- Transients are suppressed.

Preset Counter

• Logic can preselect the early termination of the count to some value *n*.

- This circuit divides by 10. When the clock causes both D_3 and D_1 to be high, a clear is sent to all flip-flops. The first case of of this count is at the clock from 9 to 10.
- Transient problems will affect the operation of this circuit.
- Data latches will help transients here as well.
- The set and clear of the flip-flops can be used to preload a starting count.

• This circuit uses a counter to generate a periodic narow pulse.

- Each 74LS163 chip has four internal flip-flops.
- ENT and ENP are the JK inputs for the flip-flops.
- $\overline{\text{LD}}$ is the $\overline{\text{SET}}$ input for the flip-flops.
- The counter is loaded with a value D from 0-255 (0-FF_H). With each clock rising edge the count increases by one. When FF_H is reached, RC goes high. This reloads the counter to repeat the cycle. The output is high for one clock cycle and low for 256-D cycles.

Synchronous Counters

- A true synchronous counter requires that all flip-flops be clocked at the same time.
- 1. Minimize noise since all inputs are well defined
- 2. Reduce propagation time
- 3. Eliminate transient counts
- The inputs must have additional logic to control each bit as in the JK divide by 2^n .

 D_0 is dividing the input clock by 2.

- D_1 is dividing the input clock by 4. It toggles when $D_0 = 1$.
- D_2 is dividing the input clock by 8. It toggles when $D_1 \& D_0 = 1$.

Divide by 3 \sqrt{NN}

• Other latches can be used to make counters such as this D-type divider.

• The truth table shows that the sequence repeats every 3 clock cycles.

CLK	D ₀	Q ₀	D ₁	Q ₁	Count
	0	0	1	0	0
0->1	1	0	0	1	2
0->1	0	1	0	0	1
0->1	0	0	1	0	0
0->1	1	0	0	1	2

• A state diagram show the sequence between possible outputs.

• Forbidden states occur when a combination cannot be reached in the sequence.

In the Divide by 3 circuit, $Q_0 = 1$ and $Q_1 = 1$ cannot be reached

If it occurs, $D_0 = 1$ and $D_1 = 0$ so the next count is 1.

• Compare to a state diagram for traffic signals.

─► <u></u>_____►

- Typically there is one output (or output pair Q/\overline{Q}) per input.
- All are designed to "hold" a set of bits.
- A *transparent latch* is based on RS flip-flops, and passes the input to the output when enabled and hold the output constant when disabled.
- A type-D register is based on D-type flip-flops, and transfers the input to the output only on a specified clock edge.

- Many registers have an enable feature to control whether or not the clock has an effect.
- If not enabled, the register outputs are held constant.

Shift Registers

- A shift register moves a pattern of bits in an array of flip-flops without altering the pattern.
- This version is a Serial In/ Parallel Out (SIPO) register.

• The truth table show the movement of the bits in the register.

CLK	IN	Q ₀	Q1	Q ₂	Q ₃
	0	0	0	0	0
0->1	1	1	0	0	0
0->1	1	1	1	0	0
0->1	0	0	1	1	0
0->1	0	0	0	1	1
0->1	0	0	0	0	1

Parallel In/Single Out (PISO)

• A PISO register loads a set of bits then shifts them serially.

The LD is a logic level that intiates a parallel load of input data.

The CLK handles the shifting.

• In this example truth table the input data is 0110.

CLK	LD	Q ₀	Q1	Q ₂	Q ₃	OUT
0->1	1	0	1	1	0	0
0->1	0	0	0	1	1	1
0->1	0	0	0	0	1	1
0->1	0	0	0	0	0	0
0->1	0	0	0	0	0	0

Psuedorandom Noise Generator

-~~~

- If the register begins at 0, the input continues to be 0 and there is no change of state.
- If the register begins at 1, that one bit will shift through the register at each clock cycle.
- When it reaches Q_6 and Q_7 then those two clocks will input a 1 instead of a 0 to the input.
- Those two consecutive bits clock through and at the end generate a 101 pattern to the input.
- Only after 255 clock cycles does the number 1 reemerge.
- The register generates all values from 1-255 in an arbitrary order that is set by the specific feedback through the XOR gate.

Truth Table with Feedback $Q_2@Q_3$

-ww-					
CLK	Q ₀ =Q ₂ @Q ₃	Q1	Q ₂	Q ₃	Count
0->1	1	0	0	0	1
0->1	0	1	0	0	2
0->1	0	0	1	0	4
0->1	1	0	0	1	9
0->1	1	1	0	0	3
0->1	0	1	1	0	6
0->1	1	0	1	1	13
0->1	0	1	0	1	10
0->1	1	0	1	0	5
0->1	1	1	0	1	11
0->1	1	1	1	0	7
0->1	1	1	1	1	15
0->1	0	1	1	1	14
0->1	0	0	1	1	12
0->1	0	0	0	1	8

Truth Table with Feedback $Q_1 @ Q_3$

₩₩			WW			W
CLK	$Q_0 = Q_1 @ Q_3$	Q ₁	Q ₂	Q ₃	Count	
0->1	1	0	0	0	1	
0->1	0	1	0	0	2	
0->1	1	0	1	0	5	
0->1	0	1	0	1	10	
0->1	0	0	1	0	4	
0->1	0	0	0	1	8	
0->1	1	0	0	0	1	
0->1	1	0	0	0	1	

• This feedback combination does not go through all 15 possible combinations, but only 7, effectively a 3-bit pseudorandom generator.

There are 6 possible feedback choices for 4 bits:

 $Q_0 = Q_2@Q_3$ gives 15 numbers

 $Q_0 = Q_1 @Q_3$ gives 7 numbers

 $Q_0 = Q_0@Q_3$ gives 15 numbers

 $Q_0 = Q_1 @Q_2$ gives 7 numbers after 2 is reached

 $Q_0 = Q_0@Q_2$ gives 7 numbers after 3 is reached

 $Q_0 = Q_0 @Q_1$ gives 3 numbers after 6 is reached

• The pseudorandom number generator state diagram shows the forbidden and isolated states.

 $Q_0 = Q_1 @ Q_2$

- The pattern sequence here is 6-13-11, a cycle of 3. Most starting points end in this cycle.
- Starting points at 4, 8, 12 or 0 end up stuck at 0.

_____^^^^^

• Random Access Memory (RAM) is a selectable register.

The basic components of a RAM are

- Input address bits (A_i)
- Chip select bit (\overline{CS})
- Output enable bit (\overline{OE})
- Write enable bit (\overline{WE})
- Input/Output data bits (D_i)

Chip select, output enable, and write enable will sometimes come under other names with slightly different function. Some of these include memory enable, read/write, address strobe and data strobe. Strobes mean that the memory is controlled by a clock edge rather than a level.

- RAMs are usually specified by the number of possible addresses (2ⁿ where n is the number is address bits) by the number of data bits.
- For example a chip with 18 address bits and 8 data bits would be a 256K x 8 RAM.
- Note that $K=2^{10}=1024$, which is not really 1000, but it is counted that way. $M=2^{20}$ and is treated as if it were 10^6 .

• Static RAM uses flip-flops as the basic storage element. The "memory" position of the flip-flop holds the data and new data is inserted by asserting a 1 or 0 at the flip-flop input while it is enabled.

- The entire memory chip is nothing more than a huge array of flip-flops.
- Like any gate circuit, when the power is off, the signals go away, so any data stored would be lost.
- The biggest advantages of SRAMs are speed and simplicity.

SRAM Timing

Battery-Backup SRAM

This is typically designed as an printed circuit card that includes low-power CMOS SRAM and a long-life battery. When the power is off, a special ultra-low power circuit kicks in and preserves the data on the flip-flops.

- Dynamic RAM uses charged capacitors as the basic storage element.
- A capacitor can hold a charge for a time based on the leakage resistance in parallel with the capacitor.

• On a chip this is about $10^9 \Omega$. With a 10 pf capacitance the leakage time constant is 10 ms.

- DRAMs have the advantage of permitting greater memory density since there is only one FET per bit as opposed to 4 FETs in a gated flip-flop.
- The disadvantage is primarily the added circuitry needed to make sure that the leaking capacitors are repeatedly recharged.
- This requires regular reading and rewriting of all the memory bits on the chip.

Read-Only Memory (ROM)

The transistor in the shaded box either exists or is "burned" leaving an open connection. If the transistor is present a select gives a "0", otherwise it gives a "1".

- They are best used for applications where one wants a hardwired pattern to always be present (eg. startup program sequences, character generators, basic system instructions).
- PROM stands for programmable read-only memory.
- An eraseable PROM (EPROM) has circuitry to undo the burned connection.