Amplifier Circuits

Two Rules for Op-amp Circuits

1. $I_{+}=I_{-}=0$.
2. $V_{+}-V_{-}=0$.

The input currents are 0.
The input voltage difference is 0 when there is negative feedback.

Buffer/Follower

- The simplest buffer is a non-inverting amplifier without resistors.

- Effectively, $\mathrm{R}_{1}=\infty$, and $\mathrm{R}_{2}=0$. So, $A=1+\frac{R_{2}}{R_{1}}=1$.

Switchable Inverter/Follower

- An inverter can be combined with a follower to provide either function.

- The inverter has a gain of -1 .
- The follower shorts the input resistor for a gain of $1+0 / 10 \mathrm{k}=1$.
- A transistor can be used for the switch:

- The follower setting has $v_{+}=v_{i n}$, since $Z_{\text {in }+}$ is very large; v_{-}, and $v_{\text {out }}$ must follow v_{+}.

Follower with Input Filter

- High-pass input filter can be added to a non-inverting amplifier to buffer only high frequencies.

- From the op-amp rule no current flows into v_{+}.
- The input current needs a path to ground through R_{3}.
- The input impedance is set by the filter $\operatorname{Re}\left(Z_{i n}\right)=\operatorname{Re}\left(1 / j \omega C+R_{3}\right)=R_{3}$.
- As a complex divider the gain at v_{+}is $A=\frac{1 / j \omega C}{1 / j \omega C+R_{3}}=\frac{1}{1+j \omega R_{3} C}$.
- The breakpoint frequency is $f_{B}=1 / 2 \pi R_{3} C=16 \mathrm{~Hz}$.
- The gain for high frequencies is the same as the remaining follower.

$$
A=1+\frac{R_{2}}{R_{1}}=1+\frac{18}{2}=10
$$

Bootstrapped Follower

- The simple buffer/follower has a gain of 1 and large input impedance.

- A high-pass input filter reduces the impedance to be only the impedance of the filter.
- The op-amp follower can add a bootstrap capacitor.

- For low frequencies the gain is zero. At high frequencies, the capacitors look like wires. Since v_{-} $=v_{+}$from op-amp rule 2 , the voltage across the $1 \mathrm{M} \Omega$ resistor is nearly 0 , so the current through the resistor is nearly 0 . Since input impedance is $v_{\text {in }} / i_{\text {in }}$ and $i_{\text {in }}$ is nearly 0 , the input impedance is very high.

Logarithmic Amplifier

- A transistor in the feedback network of an inverting amplifier creates a logarithmic amplifier.

- R_{B} compensates for the bias current.
- The current $I_{i n}$ is given by $I_{i n}=\frac{V_{i n}}{R}$.
- This current must flow into the collector of the transistor $I_{C}=I_{0} e^{V_{B E} / V_{T}}=\frac{V_{i n}}{R}$.
- The base-emitter voltage is equal to the negative of $V_{\text {out }} ; V_{\text {out }}=-V_{T} \log \frac{V_{\text {in }}}{I_{0} R}$.
- The output depends on the logarithm of the input voltage.

Analog Product

\qquad

- The output of two logarithmic amplifiers can be summed through an inverter.
- An adjustable control voltage compensates for the offsets in the \log amplifiers.
- An antilog amplifier reverses the input and feedback stages.
- The result is proportional to the product of the two input voltages.

Current-to-Voltage Converter

- Operational feedback relies on current.

- The output is usually measured in $\mathrm{V} / \mu \mathrm{A}$.
- The op-amp provides low output impedance, hence higher power.

Current-to-Current Converter

- An extra resistor to defines the output current.

$$
V_{\text {out }}=-R_{f} I_{\text {in }}
$$

From Kirchoff's Laws:

$$
\begin{aligned}
& I_{g}=I_{L}+I_{\text {in }} \\
& V_{\text {out }}=R_{g} I_{g}
\end{aligned}
$$

Combine the equations:

$$
I_{L}=-I_{i n}\left(1+\frac{R_{f}}{R_{g}}\right)
$$

Voltage-to-Current Converter

- An op-amp follower can be used to drive a conventional transistor current source.

- The current $I_{\text {out }}$ splits through the FET and BJT.
- No current passes through the gate of the FET or the v_{-}op-amp input.
- All current $I_{\text {out }}$ is present through the resistor I_{R}.
- $V_{E}=V_{\text {in }}$ from the op-amp voltage rule.

$$
I_{\text {out }}=-\frac{V_{\text {in }}}{R}
$$

Differentiator

- An amplifier can utilize the relation between charge and current.

$$
I=\frac{d Q}{d t}=C \frac{d V}{d t}
$$

- The current is converted to a voltage.

$$
v_{\text {out }}=-i R_{f}=-R_{f} C_{i} \frac{d v_{i n}}{d t}
$$

- For a sinusoidal input $v_{i n}=V_{0} \sin \omega t$,

$$
\begin{gathered}
\frac{d v_{i n}}{d t}=V_{0} \omega \cos \omega t \\
v_{\text {out }}=-R_{f} C_{i} V_{0} \omega \cos \omega t=-R_{f} C_{i} \omega v_{\text {in }}
\end{gathered}
$$

- The amplitude increases with increasing frequency.

Integrator

- The input current can be converted into a charge

- Solving for $v_{\text {out }}$:

$$
v_{\text {out }}=\frac{-1}{R_{i} C_{f}} \int v_{\text {in }} d t+K
$$

- With a sine wave input

$$
v_{\text {out }}=\frac{-1}{\omega R_{i} C_{f}} v_{i n}+K
$$

- The amplitude decreases with frequency.

Stabilized Integrator

- The constant term from the integral is undesirable on the output.
- A switch can be used to discharge the capacitor.
- The circuit can provide a path for the capacitor to discharge.

- The feedback resistor and capacitor have a parallel impedance

$$
Z_{f}=\frac{R_{f}}{1+j \omega R_{f} C_{f}}
$$

- The breakpoint frequency is $f=1 / 2 \pi R C=0.007 \mathrm{~Hz}$.
- Only DC can feedback for amplification.

Limited Differentiator

- Differentiator has large amplification at high frequencies.
- A high frequency cutoff above the signal range is often needed.
- Combine an integrator and differentiator.

- The differentiator has a low cutoff

$$
v_{\text {out }}=-R_{f} C_{i} \frac{d v_{i n}}{d t} \quad f_{B}=\frac{1}{2 \pi R_{f} C_{i}}=160 \mathrm{~Hz}
$$

- The integrator begins working at

$$
v_{\text {out }}=\frac{-1}{R_{i} C_{f}} \int v_{\text {in }} d t \quad f_{B}=\frac{1}{2 \pi R_{i} C_{f}}=3 \mathrm{MHz}
$$

- The differentiator will perform well between those two frequencies.

