Amplifier Circuits

Two Rules for Op-amp Circuits

- **1.** $I_+ = I_- = 0$. The input currents are 0.
- 2. $V_+ V_- = 0$. The input voltage difference is 0 when there is negative feedback.

Buffer/Follower

• The simplest buffer is a non-inverting amplifier without resistors.

• Effectively, $R_1 = \infty$, and $R_2 = 0$. So, $A = 1 + \frac{R_2}{R_1} = 1$.

Switchable Inverter/Follower

- The inverter has a gain of -1.
- The follower shorts the input resistor for a gain of 1 + 0/10k = 1.
- A transistor can be used for the switch:

• The follower setting has $v_+ = v_{in}$, since Z_{in+} is very large; v_- , and v_{out} must follow v_+ .

Follower with Input Filter

• High-pass input filter can be added to a non-inverting amplifier to buffer only high frequencies.

- From the op-amp rule no current flows into v_+ .
- The input current needs a path to ground through R_3 .
- The input impedance is set by the filter $Re(Z_{in}) = Re(1/j\omega C + R_3) = R_3$.
- As a complex divider the gain at v_+ is $A = \frac{1/j\omega C}{1/j\omega C + R_3} = \frac{1}{1+j\omega R_3 C}$.
- The breakpoint frequency is $f_B = 1/2\pi R_3 C = 16$ Hz.
- The gain for high frequencies is the same as the remaining follower.

$$A = 1 + \frac{R_2}{R_1} = 1 + \frac{18}{2} = 10$$

Bootstrapped Follower

• The simple buffer/follower has a gain of 1 and large input impedance.

- A high-pass input filter reduces the impedance to be only the impedance of the filter.
- The op-amp follower can add a *bootstrap* capacitor.

• For low frequencies the gain is zero. At high frequencies, the capacitors look like wires. Since $v_{-} = v_{+}$ from op-amp rule 2, the voltage across the 1 M Ω resistor is nearly 0, so the current through the resistor is nearly 0. Since input impedance is v_{in}/i_{in} and i_{in} is nearly 0, the input impedance is very high.

-~~~

Logarithmic Amplifier

- R_B compensates for the bias current.
- The current I_{in} is given by $I_{in} = \frac{V_{in}}{R}$.
- This current must flow into the collector of the transistor $I_C = I_0 e^{V_{BE}/V_T} = \frac{V_{in}}{R}$.
- The base-emitter voltage is equal to the negative of V_{out} ; $V_{out} = -V_T \log \frac{V_{in}}{I_0 R}$.
- The output depends on the logarithm of the input voltage.

LABORATORY ELECTRONICS II

Analog Product

- The output of two logarithmic amplifiers can be summed through an inverter.
- An adjustable control voltage compensates for the offsets in the log amplifiers.
- An antilog amplifier reverses the input and feedback stages.
- The result is proportional to the product of the two input voltages.

__

- The output is usually measured in $V/\mu A$.
- The op-amp provides low output impedance, hence higher power.

Current-to-Current Converter

-^^^

$$V_{out} = -R_f I_{in}$$

From Kirchoff's Laws:

$$I_g = I_L + I_{in}$$
$$V_{out} = R_g I_g$$

Combine the equations:

$$I_L = -I_{in} \left(1 + \frac{R_f}{R_g} \right)$$

Voltage-to-Current Converter

• An op-amp follower can be used to drive a conventional transistor current source.

- The current I_{out} splits through the FET and BJT.
- No current passes through the gate of the FET or the v_1 op-amp input.
- All current I_{out} is present through the resistor I_R .
- $V_E = V_{in}$ from the op-amp voltage rule.

$$I_{out} = -\frac{V_{in}}{R}$$

• An amplifier can utilize the relation between charge and current.

$$I = \frac{dQ}{dt} = C\frac{dV}{dt}$$

• The current is converted to a voltage.

$$v_{out} = -iR_f = -R_f C_i \frac{dv_{in}}{dt}$$

• For a sinusoidal input $v_{in} = V_0 \sin \omega t$,

$$\frac{dv_{in}}{dt} = V_0 \omega \cos \omega t$$

$$v_{out} = -R_f C_i V_0 \omega \cos \omega t = -R_f C_i \omega v_{in}$$

• The amplitude increases with increasing frequency.

• Solving for *v_{out}*:

$$v_{out} = \frac{-1}{R_i C_f} \int v_{in} dt + K$$

• With a sine wave input

$$v_{out} = \frac{-1}{\omega R_i C_f} v_{in} + K$$

• The amplitude decreases with frequency.

Stabilized Integrator

• The constant term from the integral is undesirable on the output.

_____MM^

- A switch can be used to discharge the capacitor.
- The circuit can provide a path for the capacitor to discharge.

• The feedback resistor and capacitor have a parallel impedance

$$Z_f = \frac{R_f}{1 + j\omega R_f C_f}$$

- The breakpoint frequency is $f = 1/2\pi RC = 0.007$ Hz.
- Only DC can feedback for amplification.

Limited Differentiator

• Differentiator has large amplification at high frequencies.

- A high frequency cutoff above the signal range is often needed.
- Combine an integrator and differentiator.

• The differentiator has a low cutoff

$$v_{out} = -R_f C_i \frac{dv_{in}}{dt}$$
 $f_B = \frac{1}{2\pi R_f C_i} = 160 Hz$

• The integrator begins working at

$$v_{out} = \frac{-1}{R_i C_f} \int v_{in} dt$$
 $f_B = \frac{1}{2\pi R_i C_f} = 3MHz$

• The differentiator will perform well between those two frequencies.

-////