DC Circuits

- Basic DC circuits consist of resistors and batteries.
- Ohm's law governs the behavior of resistors.

$$
V=I R
$$

- Ohmic devices have a linear voltage - current relationship.

Kirchhoff's Laws

- There are two rules that can be applied to circuit analysis.
- Kirchhoff's current rule

Current is conserved

$$
I_{3}=I_{1}+I_{2}
$$

- Kirchhoff's voltage rule

Voltage is conserved

$$
V_{1}+V_{2}+V_{3}=0
$$

Branch Method

- Label a current through each branch of the circuit.
- Set up a set of independent equations for the junctions (current law) and loops (voltage law) in the circuit.
- Current law: $I_{3}=I_{1}+I_{2}$

$V_{1}=16 \mathrm{~V}$
$V_{2}=6 \mathrm{~V}$
$R_{1}=2 \mathrm{k} \Omega$
$R_{2}=4 \mathrm{k} \Omega$
$R_{3}=5 \mathrm{k} \Omega$
- Voltage law:

$$
\begin{gathered}
V_{1}-V_{2}=R_{1} I_{1}-R_{2} I_{2} \\
V_{2}=R_{2} I_{2}+R_{3} I_{3}
\end{gathered}
$$

- Solve for I_{1}, substituting for I_{3} and I_{2} :

$$
\begin{gathered}
V_{2}=R_{2} I_{2}+R_{3} I_{1}+R_{3} I_{2} \\
V_{2}=R_{1} I_{1}+V_{2}-V_{1}+R_{3} I_{1}+\left(R_{3} / R_{2}\right)\left(R_{1} I_{1}+V_{2}-V_{1}\right) \\
R_{1} R_{2} I_{1}+R_{2} R_{3} I_{1}+R_{1} R_{3} I_{1}=R_{2} V_{1}+R_{3} V_{1}-R_{3} V_{2} \\
I_{1}=\left(R_{2} V_{1}+R_{3} V_{1}-R_{3} V_{2}\right) /\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)
\end{gathered}
$$

- Finally,

$$
I_{1}=3 \mathrm{~mA}, I_{2}=-1 \mathrm{~mA}, I_{3}=2 \mathrm{~mA}
$$

Load Line

V-I Curves

- A battery and resistor in series has a characteristic voltage - current graph.

Thevenin Equivalent

- Any circuit of batteries and resistors can be reduced to one battery and one resistor in series.
- Any set of circuit equations is reduced to $V(I)=V_{t h}-I R_{t h}$.

Procedure

1. Find the voltage with no external circuit as $V_{t h}$.
2. Find the current that would flow through an external short circuit.
3. Find the equivalent resistance as $R_{t h}=V_{t h} / I_{s c}$.
4. The $R_{t h}$ is the same if all batteries are shorted and resistance measured.

Norton's Theorem

- Any circuit of batteries and resistors can be reduced to one current source and one resistor in parallel.

4-Terminal Circuits

$\longrightarrow M^{\wedge}$

- Voltage dividers

- The ratio $V_{\text {out }} / V_{\text {in }}$ is the gain A.
- $V_{\text {out }}=f\left(V_{\text {in }}\right)$ is the transfer characteristic.

Diodes

- Diodes permit one-way current flow.

- Diode behavior displayed as a $v-i$ characteristic

Bipolar Junction Transistor

$\mathrm{M}^{2} \longrightarrow$

- The BJT is built like a diode sandwich.
- Quantum properties of the BJT allow for transconductance.

$$
I_{C}=\beta I_{B}
$$

- The emitter follower has the emitter voltage track the base voltage.

$$
\begin{aligned}
& V_{E}=V_{B}-0.6 V \\
& v_{\text {out }}=v_{\text {in }} \\
& I_{E}=I_{C}+I_{B}=(\beta+1) I_{B}
\end{aligned}
$$

Field Effect Transistor

- MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) has an input (gate) impedance which is very high $\left(10^{14} \Omega\right)$.

- The MOSFET can be used as a bidirectional switch, like a mechanical switch.
- There is a voltage divider with $R_{D S}$ and the $47 \mathrm{k} \Omega$ resistor.
- When the gate is ground or negative, $R_{D S}>10^{10} \Omega, v_{\text {out }}<$ $0.0001 v_{i n}$.
- When the gate is $+15 \mathrm{~V}, R_{D S}=100$

$\Omega, v_{\text {out }}=0.998 v_{\text {in }}$.

Operational Amplifiers

- An op-amp is a difference amplifier with power supplies at V_{+}and V_{-}.

$$
v_{\text {out }}=A_{0}\left(v_{1}-v_{2}\right)
$$

- Op amps have special properties when used with negative feedback.

- There are two rules to analyze a circuit with an op amp.

1. $I_{+}=I_{-}=0$
2. $v_{+}-v_{-}=0$

Forward Bias Diode

- Consider a single diode with an AC signal.

- A diode will "short-circuit" signals in the forward direction.

- Real diodes are modeled by an equivalent resistance and diode voltage drop.

Reverse Bias

- A diode will block signals in the reverse direction.

- Real diodes pass a small amount of reverse current.

Half-wave Rectifier

- Ideal behavior doesn't match real behavior.

- Forward voltage is slightly less.
- Reverse current isn't zero.

Full-wave Rectifier

- Two half-have rectifiers in parallel make a full-wave rectifier.
- When $v_{\text {in }}$ is positive the current flows through P_{1}, R_{L}, and P_{2}.
- When $v_{\text {in }}$ is negative the current flows through N_{1}, R_{L}, and N_{2}.

Diode Clamp

- A clamps cuts off current at voltages other than ground.

$$
\text { If } v_{\mathrm{in}}>5.6 \mathrm{~V}, v_{\mathrm{out}}=5.6 \mathrm{~V}
$$

- Two diodes reversed in parallel become a limiter.

If $v_{\text {in }}>0.6 \mathrm{~V}, v_{\text {out }}=0.6 \mathrm{~V}$, if $v_{\text {in }}<-0.6 \mathrm{~V}, v_{\text {out }}=-0.6 \mathrm{~V}$

Zener Diode

- Zener diodes have well defined reverse breakdown voltages and allow sufficient current to flow to maintain a constant voltage drop.

$$
\text { If } v_{\text {in }}>V_{Z}, v_{\text {out }}=V_{Z}
$$

- Two zeners can be combined to form a limiter.
If $v_{\text {in }}>V_{Z}+V_{f}, v_{\text {out }}=V_{Z}$, if $v_{\text {in }}<-\left(V_{Z}+V_{f}\right)$, $v_{\text {out }}=-\left(V_{Z}+V_{f}\right)$

- The pair of diodes are sold in one package as a transient suppressor.

Diode Bias

- Diodes can bias a circuit to a value other than 0 volts.

- Without the diode this is a high-pass filter.
- With the diode: for $v_{\mathrm{in}}=V_{0} \sin \omega t, v_{\text {out }}=v_{\mathrm{in}}+V_{0}-0.6 \mathrm{~V}$.

