Physics 475, Laboratory 8
Active Filters

Overview

The purpose of these is to use feedback to build active analog filters.

Components

The TL071 op-amp is an integrated circuit based on JFET inputs and biploar transistor outputs (BIFET) and comes in an 8-pin dual in-line package (DIP). The connections for the chip looking down with the notch facing up is:

Background

Active filters are characterized by their behavior towards gain and phase shift as functions of both the frequency and time. The unity gain Sallen Key active filter is a 2-pole filter with bootstrapping. The break frequency is $\omega_{b}=\frac{1}{\sqrt{R_{1} C_{1} R_{2} C_{2}}}$
and the damping factor is $d_{0}=\frac{1}{Q}=\left(R_{1}+R_{2}\right) C_{2} \omega_{b}$.
With a variable gain for negative feedback and matching $R_{1}=R_{2}=R, C_{1}=C_{2}=C$, the gain and damping are independent of the break frequency $\omega_{b}=\frac{1}{R C}$.

$$
\begin{gathered}
A_{0}=1+\frac{R_{3}}{R_{4}} \\
d_{0}=3-A_{0}=2-\frac{R_{3}}{R_{4}}
\end{gathered}
$$

As with a mechanical oscillator the gain vs. frequency curve can be descibed as overdamped $\left(d_{0}{ }^{2}>2\right)$, underdamped $\left(d_{0}^{2}<2\right)$, or critically damped $\left(d_{0}^{2}=2\right)$.

1. Chebyshev Filter

Connect a TL071 op-amp to form the variable gain Sallen Key circuit in figure 1. Select R and C such that $f_{b}=1 \mathrm{kHz}$. Use a $10 \mathrm{k} \Omega$ potentiometer for R_{g} so that R_{3} is the feedback part of R_{g} and R_{4} is the remainder.

Figure 1: Variable Gain Sallen Key Filter
Adjust the potentiometer so that $d_{0}=0.767$ to provide an underdamped response. Using a sine wave input measure and graph the filter gain and phase shift as a function of frequency. What is the gain roll-off as a function of frequency in $\mathrm{dB} /$ octave? Set the function generator to provide $v_{i n}$ with a square wave of 100 Hz . Graph the transient response at the rising edge and note the rise time, overshoot and settling time.

2. Bessel Filter

Adjust the potentiometer for the circuit in part 1 so that $d_{0}=1.732$ to provide an overdamped response. Repeat the measurements from part 1.

