

In a ripple counter at a clock edge each data bit much change before the next higher bit can change. The apparent counts that exist during the clock transition are called *transients*.

D-Latch Outputs

• Clock synchronizes output

- The ripple counter is updated on the falling edge of the clock.
- The D flip-flops are clocked on the rising edge of the clock, long after the values of all bits are set.
- Transients are suppressed.

Arbitrary Counter

Count to 10

- When the clock causes both D_3 and D_1 to be high, a clear is sent to all flip-flops.
- The first case of this count is at the clock from 9 to 10.

Load and Clear Inputs

The set and clear of the flip-flops are used in circuits to preload a starting count.

Latched Outputs

Transient problems can be fixed with output latches.

Pulse Generator • Circuit $D_0 D_1 D_2 D_3$ $D_4 D_5 D_6 D_7$ $D_0 D_1 D_2 D_3$ $D_0 D_1 D_2 D_3$ ENT ENT +5ENP ENP Output 74LS163 RC RC 74LS163 CLK CLK LD LD R R

• Each chip has four internal flip-flops.

CLK

- ENT and ENP are the JK inputs for the flip-flops.
- $\overline{\text{LD}}$ is the $\overline{\text{SET}}$ input for the flip-flops.

The counter is loaded with a value x from 0-255 (0-FF_H). With each clock rising edge the count increases by one. When FF_H is reached, RC goes high. This reloads the counter to repeat the cycle. The output is high for one clock cycle and low for 256-x cycles.

Synchronous Counters

Clock all flip-flops at the same time.

- 1. Reduce propagation time
- 2. Eliminate transient counts

Divide by 2ⁿ (JK)

 D_0 is dividing the input clock by 2.

 D_1 is dividing the input clock by 4. It toggles when $D_0 = 1$.

 D_2 is dividing the input clock by 8. It toggles when $D_1 \& D_0 = 1$.

Divide By n

• Divide by 3 (D-type)

• Divide by 3 Truth Table

CLK	D ₀	Q ₀	D ₁	Q1	Count
	0	0	1	0	0
0->1	1	0	0	1	2
0->1	0	1	0	0	1
0->1	0	0	1	0	0
0->1	1	0	0	1	2

State Diagram

Forbidden States

In the Divide by 3 circuit, $Q_0 = 1$ and $Q_1 = 1$ cannot be reached

If it occurs, $D_0 = 1$ and $D_1 = 0$ so the next count is 1.

• State diagram for traffic signals

Latches and Registers

- Multiple flip-flops on one IC with one clock and clear
- One output (or output pair Q/\overline{Q}) per input
- Designed to "hold" a set of bits

Transparent Latches

Based on RS flip-flops, these devices pass the input to the output when enabled and hold the output constant when disabled.

Type D Registers

Based on D-type flip-flops, these devices transfer the input to the output only on a specified clock edge and then only when enabled. Otherwise the output is held constant.

Shift Registers

• Serial In/Parallel Out (SIPO)

• SIPO Truth Table - bits shift with each clock cycle

CLK	IN	Q ₀	Q1	Q ₂	Q ₃
	0	0	0	0	0
0->1	1	1	0	0	0
0->1	1	1	1	0	0
0->1	0	0	1	1	0
0->1	0	0	0	1	1
0->1	0	0	0	0	1

Parallel Load

• Parallel In/Single Out (PISO)

• PISO Truth Table (Data is 0110); LD is parallel load of input data

CLK	LD	Q ₀	Q ₁	Q ₂	Q ₃	OUT
0->1	1	0	1	1	0	0
0->1	0	0	0	1	1	1
0->1	0	0	0	0	1	1
0->1	0	0	0	0	0	0
0->1	0	0	0	0	0	0

• Pseudorandom Noise Generator

If the register begins at 0, the input continues to be 0 and there is no change of state. If the register begins at 1, that one bit will shift through the register at each clock cycle. When it reaches Q_6 and Q_7 then those two clocks will input a 1 instead of a 0 to the input. Those two consecutive bits clock through and at the end generate a 101 pattern to the input. Only after 255 clock cycles does the number 1 reemerge.

The register generates all values from 1-255 in an arbitrary order that is set by the specific feedback through the XOR gate.

Truth Table with Feedback

-////-				V		
CLK	Q ₀ =Q ₂ @Q ₃	Q1	Q2	Q3	Count	
0->1	1	0	0	0	1	-
0->1	0	1	0	0	2	-
0->1	0	0	1	0	4	-
0->1	1	0	0	1	9	
0->1	1	1	0	0	3	-
0->1	0	1	1	0	6	-
0->1	1	0	1	1	13	-
0->1	0	1	0	1	10	
0->1	1	0	1	0	5	
0->1	1	1	0	1	11	-
0->1	1	1	1	0	7	-
0->1	1	1	1	1	15	
0->1	0	1	1	1	14	
0->1	0	0	1	1	12	
0->1	0	0	0	1	8	

LABORATORY ELECTRONICS I

Feedback Changes

• Feedback Q₁@Q₃

CLK	$Q_0 = Q_1 @ Q_3$	Q1	Q ₂	Q ₃	Count
0->1	1	0	0	0	1
0->1	0	1	0	0	2
0->1	1	0	1	0	5
0->1	0	1	0	1	10
0->1	0	0	1	0	4
0->1	0	0	0	1	8
0->1	1	0	0	0	1

This feedback combination does not go through all 15 possible combinations, but only 7.

There are 6 possible feedback choices for 4 bits:

$$Q_0 = Q_2 @Q_3$$
 gives 15 numbers; $Q_0 = Q_1 @Q_3$ gives 7 numbers

 $Q_0 = Q_0 @Q_3$ gives 15 numbers; $Q_0 = Q_1 @Q_2$ gives 7 numbers after 2 is reached

 $Q_0 = Q_0 @Q_2$ gives 7 numbers after 3 is reached; $Q_0 = Q_0 @Q_1$ gives 3 numbers after 6 is reached

Pseudorandom State Diagram

• Feedback Q₁@Q₃

-ww

-₩₩-

-WW

 $\mathbf{Q}_0 = \mathbf{Q}_1 (a) \mathbf{Q}_3$