Counters

Ripple Counter

In a ripple counter at a clock edge each data bit much change before the next higher bit can change.
The apparent counts that exist during the clock transition are called transients.

D-Latch Outputs

$\longrightarrow M^{\longrightarrow}$

- Clock synchronizes output

- The ripple counter is updated on the falling edge of the clock.
- The D flip-flops are clocked on the rising edge of the clock, long after the values of all bits are set.
- Transients are suppressed.

Arbitrary Counter

Count to 10

- When the clock causes both D_{3} and D_{1} to be high, a clear is sent to all flip-flops.
- The first case of this count is at the clock from 9 to 10 .

Load and Clear Inputs

The set and clear of the flip-flops are used in circuits to preload a starting count.

Latched Outputs

Transient problems can be fixed with output latches.

Pulse Generator

- Circuit

- Each chip has four internal flip-flops.
- ENT and ENP are the JK inputs for the flip-flops.
- $\overline{\mathrm{LD}}$ is the $\overline{\mathrm{SET}}$ input for the flip-flops.

The counter is loaded with a value x from $0-255\left(0-\mathrm{FF}_{\mathrm{H}}\right)$. With each clock rising edge the count increases by one. When FF_{H} is reached, RC goes high. This reloads the counter to repeat the cycle. The output is high for one clock cycle and low for 256-x cycles.

Synchronous Counters

Clock all flip-flops at the same time.

1. Reduce propagation time
2. Eliminate transient counts

Divide by $\mathbf{2}^{\mathbf{n}}$ (JK)

D_{0} is dividing the input clock by 2 .
D_{1} is dividing the input clock by 4 . It toggles when $D_{0}=1$.
D_{2} is dividing the input clock by 8 . It toggles when $D_{1} \& D_{0}=1$.

Divide By n

- Divide by 3 (D-type)

- Divide by 3 Truth Table

CLK	D_{0}	Q_{0}	D_{1}	Q_{1}	Count
	0	0	1	0	0
$0->1$	1	0	0	1	2
$0->1$	0	1	0	0	1
$0->1$	0	0	1	0	0
$0->1$	1	0	0	1	2

State Diagram

Forbidden States

In the Divide by 3 circuit, $\mathrm{Q}_{0}=1$ and $\mathrm{Q}_{1}=1$ cannot be reached
If it occurs, $D_{0}=1$ and $D_{1}=0$ so the next count is 1 .

- State diagram for traffic signals

Registers

Latches and Registers

- Multiple flip-flops on one IC with one clock and clear
- One output (or output pair $\mathrm{Q} / \overline{\mathrm{Q}}$) per input
- Designed to "hold" a set of bits

Transparent Latches

Based on RS flip-flops, these devices pass the input to the output when enabled and hold the output constant when disabled.

Type D Registers

Based on D-type flip-flops, these devices transfer the input to the output only on a specified clock edge and then only when enabled. Otherwise the output is held constant.
74LS175

Shift Registers

\longrightarrow

- Serial In/Parallel Out (SIPO)

- SIPO Truth Table - bits shift with each clock cycle

CLK	IN	Q_{0}	Q_{1}	Q_{2}	Q_{3}
	0	0	0	0	0
$0->1$	1	1	0	0	0
$0->1$	1	1	1	0	0
$0->1$	0	0	1	1	0
$0->1$	0	0	0	1	1
$0->1$	0	0	0	0	1

Parallel Load

- Parallel In/Single Out (PISO)

- PISO Truth Table (Data is 0110); LD is parallel load of input data

CLK	LD	Q_{0}	Q_{1}	Q_{2}	Q_{3}	OUT
$0->1$	1	0	1	1	0	0
$0->1$	0	0	0	1	1	1
$0->1$	0	0	0	0	1	1
$0->1$	0	0	0	0	0	0
$0->1$	0	0	0	0	0	0

Shift Register Signal Generators

- Pseudorandom Noise Generator

If the register begins at 0 , the input continues to be 0 and there is no change of state.
If the register begins at 1 , that one bit will shift through the register at each clock cycle.
When it reaches Q_{6} and Q_{7} then those two clocks will input a 1 instead of a 0 to the input.
Those two consecutive bits clock through and at the end generate a 101 pattern to the input.
Only after 255 clock cycles does the number 1 reemerge.
The register generates all values from 1-255 in an arbitrary order that is set by the specific feedback through the XOR gate.

Truth Table with Feedback

N / N		MW \qquad			
CLK	$\mathrm{Q}_{0}=\mathrm{Q}_{2} @ \mathrm{Q}_{3}$	Q_{1}	Q_{2}	Q_{3}	Count
$0->1$	1	0	0	0	1
$0->1$	0	1	0	0	2
$0->1$	0	0	1	0	4
$0->1$	1	0	0	1	9
$0->1$	1	1	0	0	3
$0->1$	0	1	1	0	6
$0->1$	1	0	1	1	13
$0->1$	0	1	0	1	10
$0->1$	1	0	1	0	5
$0->1$	1	1	0	1	11
$0->1$	1	1	1	0	7
$0->1$	1	1	1	1	15
$0->1$	0	1	1	1	14
$0->1$	0	0	1	1	12
$0->1$	0	0	0	1	8

Feedback Changes

- Feedback $\mathrm{Q}_{1} @ \mathrm{Q}_{3}$

CLK	$\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{3}$	Q_{1}	Q_{2}	Q_{3}	Count
$0->1$	1	0	0	0	1
$0->1$	0	1	0	0	2
$0->1$	1	0	1	0	5
$0->1$	0	1	0	1	10
$0->1$	0	0	1	0	4
$0->1$	0	0	0	1	8
$0->1$	1	0	0	0	1

This feedback combination does not go through all 15 possible combinations, but only 7 .

There are 6 possible feedback choices for 4 bits:
$\mathrm{Q}_{0}=\mathrm{Q}_{2} @ \mathrm{Q}_{3}$ gives 15 numbers; $\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{3}$ gives 7 numbers
$\mathrm{Q}_{0}=\mathrm{Q}_{0} @ \mathrm{Q}_{3}$ gives 15 numbers; $\mathrm{Q}_{0}=\mathrm{Q}_{1} @ \mathrm{Q}_{2}$ gives 7 numbers after 2 is reached
$\mathrm{Q}_{0}=\mathrm{Q}_{0} @ \mathrm{Q}_{2}$ gives 7 numbers after 3 is reached; $\mathrm{Q}_{0}=\mathrm{Q}_{0} @ \mathrm{Q}_{1}$ gives 3 numbers after 6 is reached

Pseudorandom State Diagram

\longrightarrow

- Feedback $\mathrm{Q}_{1} @ \mathrm{Q}_{3}$

