## Sequential Logic



A gate is a circuit element that operates on a binary signal.

Combinatoric logic uses Boolean algebra to calculate the output from the input.
Sequential logic requires knowledge of the previous state of the circuit.

## Logic Operations - Sequential Logic

Sequential devices typically have three (four) methods of description:

1. Truth table
2. Circuit symbol (gate equivalent)
3. Timing diagram

## RS (Set-Reset) Flip-Flop



- RS Flip-flop Diagram


Able to be forced into one state or another with input to SET or RESET.

- RS Flip-flop Timing


SET and RESET cannot be used simultaneously - ambiguous result.

## Switch Debouncer

## $\mathrm{M} \longrightarrow$



- Normal Switch

- Debounced Switch



## Triggered Flip-Flops



- Clocked RS Flip-flop


The extra NAND gates allow the CLOCK to control whether $S$ and $R$ make it to the flip-flop. If $\mathrm{CLOCK}=0$ the inputs to the flip-flop are disabled and Q stays constant. If $\mathrm{CLOCK}=1$ the inputs are active and Q samples S and R .

Disadvantage: If S or R change during the clock pulse, only the final state of the RS flip-flop is preserved when CLOCK=0 again.

## D-Type Flip-Flop

$\qquad$


- Level-Sensitive Clock


Circuit is identical to a clocked RS flip-flop, except one input is inverted to form the other input.

| CLK | D | Q | $\overline{\mathrm{Q}}$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | Q | $\overline{\mathrm{Q}}$ |
| 0 | 1 | Q | $\overline{\mathrm{Q}}$ |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

With only one input the indeterminate state $(R=S=1)$ is avoided.
D can make many transitions while $\mathrm{CLK}=1$, only the last level is stored when CLK $=0$.

## Edge-Triggered Flip-Flops



- Master-Slave Flip-Flop


This circuit consists of two level-sensitive D-type flip-flops.
During CLK=1, the first flip-flop is enabled, but the second is disabled (memory only).
During CLK=0, the first flip-flop is disabled, but the second is enabled, so it samples what ever is held at that time on flip-flop 1.

The output Q can only change exactly as CLK goes from 1 to 0 .
This is a negative edge trigger.

## Positive Edge Trigger



- Three RS flip-flops



## Set and Clear Inputs



- Most edge-triggered flip-flops
come with both set and clear options that work like S and R from an RS flip-flop.


If $\mathrm{SET}=0$, then Q is forced to 1 , and $\overline{\mathrm{Q}}$ to 0 .
If CLEAR $=0$ (RESET), then $\overline{\mathrm{Q}}$ is forced to 1 , and Q to 0 .
SET and CLEAR take effect regardless of the state of CLK.

- D-type flip-flops also come with positive logic SET and CLEAR.


## Divider



## Dividers - Divide by 2

- D-type Flip-Flop

$D$ is always set with $\bar{Q}$, so at each rising edge Q switches.
There is no confusion at the rising edge since there is a 10 ns propagation delay through the flipflop (74HC74), and the output needs to be stable for only 3 ns .


## JK Flip-Flops



- Logic

2-Input clocked flip-flop, like D-type with the following input:

$$
D=(J \oplus K) \bullet J+J \bullet K \bullet \bar{Q}+\bar{J} \bullet \bar{K} \bullet Q
$$

- Circuit (may include set and clear)

- J and K different, $\mathrm{Q}=\mathrm{J}$
- $\mathrm{J}=\mathrm{K}=1, \mathrm{Q}=\operatorname{not} \mathrm{Q}$
- $\mathrm{J}=\mathrm{K}=0$, Q holds


## JK Divider

$\longrightarrow M^{\square}$


- JK Flip-Flop


Holding both inputs of a JK high causes a toggle.

## Multi-Stage Divider



- Divide by $2^{\mathrm{n}}$


Each JK flip-flop is set to divide the clock by 2.
$\mathrm{D}_{0}$ is dividing the input clock by 2.
$D_{1}$ is dividing the input clock by 4 .
$\mathrm{D}_{2}$ is dividing the input clock by 8 .
$\mathrm{D}_{3}$ is dividing the input clock by 16 .

This can be extended to any arbitrary length.

## Divider Truth Table



- Divide by 16 Truth Table

| CLK | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | Count |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 2 |
| 1 | 0 | 1 | 0 | 0 | 2 |
| 0 | 1 | 1 | 0 | 0 | 3 |
| $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ |
| 1 | 0 | 1 | 1 | 1 | 14 |
| 0 | 1 | 1 | 1 | 1 | 15 |
| 1 | 1 | 1 | 1 | 1 | 15 |
| 0 | 0 | 0 | 0 | 0 | 0 |

