Sequential Logic

A *gate* is a circuit element that operates on a binary signal.

Combinatoric logic uses Boolean algebra to calculate the output from the input.

Sequential logic requires knowledge of the previous state of the circuit.

Logic Operations - Sequential Logic

Sequential devices typically have three (four) methods of description:

- 1. Truth table
- 2. Circuit symbol (gate equivalent)
- 3. Timing diagram

RS (Set-Reset) Flip-Flop

• RS Flip-flop Diagram

Able to be forced into one state or another with input to SET or RESET.

• RS Flip-flop Timing

SET and RESET cannot be used simultaneously - ambiguous result.

Switch Debouncer

П

• Debounced Switch

Triggered Flip-Flops

The extra NAND gates allow the CLOCK to control whether S and R make it to the flip-flop. If CLOCK=0 the inputs to the flip-flop are disabled and Q stays constant. If CLOCK=1 the inputs are active and Q samples S and R.

Disadvantage: If S or R change during the clock pulse, only the final state of the RS flip-flop is preserved when CLOCK=0 again.

D-Type Flip-Flop

• Level-Sensitive Clock

Circuit is identical to a clocked RS flip-flop, except one input is inverted to form the other input.

CLK	D	Q	\overline{Q}
0	0	Q	\overline{Q}
0	1	Q	\overline{Q}
1	0	0	1
1	1	1	0

With only one input the indeterminate state (R=S=1) is avoided.

D can make many transitions while CLK = 1, only the last level is stored when CLK = 0.

Edge-Triggered Flip-Flops

• Master-Slave Flip-Flop

This circuit consists of two level-sensitive D-type flip-flops.

During CLK=1, the first flip-flop is enabled, but the second is disabled (memory only).

During CLK=0, the first flip-flop is disabled, but the second is enabled, so it samples what ever is held at that time on flip-flop 1.

The output Q can only change exactly as CLK goes from 1 to 0.

This is a negative edge trigger.

Positive Edge Trigger

• Three RS flip-flops

Set and Clear Inputs

• Most edge-triggered flip-flops come with both set and clear options that work like S and R from an RS flip-flop.

If SET=0, then Q is forced to 1, and \overline{Q} to 0. If CLEAR=0 (RESET), then \overline{Q} is forced to 1, and Q to 0. SET and CLEAR take effect regardless of the state of CLK.

• D-type flip-flops also come with positive logic SET and CLEAR.

• D-type Flip-Flop

D is always set with \overline{Q} , so at each rising edge Q switches.

There is no confusion at the rising edge since there is a 10ns propagation delay through the flip-flop (74HC74), and the output needs to be stable for only 3 ns.

JK Flip-Flops w

• Logic

2-Input clocked flip-flop, like D-type with the following input:

$$D = (J \oplus K) \bullet J + J \bullet K \bullet \overline{Q} + \overline{J} \bullet \overline{K} \bullet Q$$

• Circuit (may include set and clear)

- J and K different, Q = J
- J = K = 1, Q = not Q
- J = K = 0, Q holds

JK Divider

Holding both inputs of a JK high causes a toggle.

Multi-Stage Divider

• Divide by 2ⁿ

Each JK flip-flop is set to divide the clock by 2.

- D_0 is dividing the input clock by 2.
- D_1 is dividing the input clock by 4.
- D_2 is dividing the input clock by 8.
- D_3 is dividing the input clock by 16.

This can be extended to any arbitrary length.

Divider Truth Table

• Divide by 16 Truth Table

CLK	D ₀	D ₁	D ₂	D ₃	Count
0	0	0	0	0	0
1	0	0	0	0	0
0	1	0	0	0	1
1	1	0	0	0	1
0	0	1	0	0	2
1	0	1	0	0	2
0	1	1	0	0	3
1	0	1	1	1	14
0	1	1	1	1	15
1	1	1	1	1	15
0	0	0	0	0	0