Op-Amp Circuits

Op-Amps with Negative Operational Feedback

- Op-amps have very high input impedance, so the input current is nearly zero. For most circuits it can be treated as equal to zero compared to other currents in the circuit.
- Op-amps have very large gain. Circuits that use negative operational feedback take advantage of the large gain and feedback to keep both input voltages at the same value compared to other voltages in the circuit.

Two Rules for Op-amp Circuits

1. $\mathrm{I}_{+}=\mathrm{I}_{-}=0 . \quad$ The input currents are 0.
2. $V_{+}-V_{-}=0$.

$$
\text { The input voltage difference is } 0 .
$$

Op-Amp Analysis

- Find the voltage at the non-inverting input and use rule two to assign that same voltage to the inverting input.
- Find the current flowing at the inverting input from any voltage source.
- Use rule one to send all the current at an input flowing into the feedback network
- Use the current through the feedback network to find a voltage drop to the output.

- The non-inverting, inverting and feedback networks can be complex impedances, semiconductors, or other active components.

Inverting Amplifier

- Use a resistor for input and feedback.

- From the op-amp current rule, since $I_{-}=0, I_{1}=I_{2}$.
- From the op-amp voltage rule, since $V_{+}=0, V_{-}=0$.
- Ohm's law gives $I_{1}=V_{\text {in }} / R_{1}$ and $V_{\text {out }}=-I_{1} R_{2}$.
- The gain for the amplifier is

$$
A=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-R_{2}}{R_{1}}
$$

- Input impedance, v_{-}is a virtual ground:

$$
Z_{i n}=R_{1}
$$

- Output impedance using operational feedback

$$
Z_{\text {out }}=\frac{-Z_{\text {out }}}{A_{0}}<1 \Omega
$$

Non-inverting Amplifier

- Use the positive input for the signal to get positive gain.

- From the op-amp voltage rule, since $V_{+}=V_{i n}, V_{-}=V_{i n}$.
- From the op-amp current rule, since $I_{-}=0, I_{1}=I_{2}$.
- Ohm's law gives $I_{1}=V_{\text {in }} / R_{1}$ and $V_{\text {out }}=I_{1} R_{2}+V_{\text {in }}$.
- The gain for the amplifier is $A=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{1} R_{2}+I_{1} R_{1}}{I_{1} R_{1}}=\frac{R_{1}+R_{2}}{R_{1}}=1+\frac{R_{2}}{R_{1}}$
- Input impedance based on op-amp only

$$
Z_{i n}>10^{8-12} \Omega
$$

- Output impedance again uses operational feedback

$$
Z_{\text {out }}=\frac{-Z_{\text {out }}}{A_{0}}<1 \Omega
$$

Buffer/Follower

- Non-inverting amplifier without resistors.

- Effectively, $\mathrm{R}_{1}=\infty$, and $\mathrm{R}_{2}=0$. So, $A=1+\frac{R_{2}}{R_{1}}=1$
- This is an op-amp version of a emitter-follower with very high input impedance and very low output impedance.

Summing Amplifier

- Consider two inputs V_{1} and V_{2} an an inverting amplifier

- From the op-amp rules, $v_{-}=0$.

$$
I_{1}=\frac{V_{1}}{R} \quad I_{2}=\frac{V_{2}}{R}
$$

- Using the Kirchoff current law: $I_{f}=I_{1}+I_{2}$.

$$
V_{\text {out }}=-I_{0} R_{f}=-\left(V_{1}+V_{2}\right) \frac{R_{f}}{R}
$$

- The input voltages are summed and amplified.

Difference Amplifier

- Combine an inverting and non-inverting amplifier

- On the non-inverting side: $I_{2}=\frac{V_{2}}{R_{i}+R_{f}} \quad V_{A}=\frac{R_{f} V_{2}}{R_{i}+R_{f}}$
- On the inverting side: $I_{1}=\frac{V_{1}-V_{A}}{R_{i}}=\frac{\left(R_{i}+R_{f}\right) V_{1}-R_{f} V_{2}}{\left(R_{i}+R_{f}\right) R_{i}}$
- The output is:

$$
V_{o u t}=-I_{1} R_{f}+V_{A}=\frac{-\left[\left(R_{i}+R_{f}\right) V_{1}-R_{f} V_{2}\right] R_{f}}{\left(R_{i}+R_{f}\right) R_{i}}+\frac{R_{i} R_{f} V_{2}}{\left(R_{i}+R_{f}\right) R_{i}}
$$

- This can be reduced to

$$
V_{\text {out }}=\frac{R_{f}}{R_{i}}\left(V_{2}-V_{1}\right)
$$

Differentiator

- An amplifier can utilize the relation between charge and current.

$$
I=\frac{d Q}{d t}=C \frac{d V}{d t}
$$

- The current is converted to a voltage

$$
v_{\text {out }}=-i R_{f}=-R_{f} C_{i} \frac{d v_{i n}}{d t}
$$

- For a sinusoidal input $v_{i n}=V_{0} \sin \omega t$,

$$
\begin{gathered}
\frac{d v_{i n}}{d t}=V_{0} \omega \cos \omega t \\
v_{\text {out }}=-R_{f} C_{i} V_{0} \omega \cos \omega t=-R_{f} C_{i} \omega v_{\text {in }}
\end{gathered}
$$

- The amplitude increases with increasing frequency

Integrator

- The input current can be converted into a charge

- Solving for $v_{\text {out }}$:

$$
v_{\text {out }}=\frac{-1}{R_{i} C} \int v_{\text {in }} d t+K
$$

- With a sine wave input

$$
v_{\text {out }}=\frac{-1}{\omega R_{i} C_{f}} v_{\text {in }}+K
$$

- The amplitude decreases with frequency.

Current-to-Voltage Converter

- Operational feedback relies on current.

This is used for small input signals such as photonic devices.
A parallel feedback capacitor can be used to reduce high frequencies.
The output is usually measured in $\mathrm{V} / \mu \mathrm{A}$.

- The op-amp provides low output impedance, hence higher power.

Current-to-Current Converter

- An extra resistor to defines the current.

$$
V_{\text {out }}=-R_{f} I_{\text {in }}
$$

From Kirchoff's Laws:

$$
\begin{gathered}
I_{g}=I_{L}+I_{\text {in }} \\
V_{\text {out }}=R_{g} I_{g}
\end{gathered}
$$

Combine the equations:

$$
I_{L}=-I_{i n}\left(1+\frac{R_{f}}{R_{g}}\right)
$$

Voltage-to-Current Converter

- An op-amp follower can be used to drive a conventional transistor current source.

- R_{1} and R_{2} form a voltage divider, and the amplifier acts as a buffer. $V_{E}=\frac{R_{2}}{R_{1}+R_{2}} V_{E E}$
- The current I_{E} is defined by $R_{E} ; I_{E}=\frac{V_{E E}-V_{E}}{R_{E}}=\frac{R_{1}}{\left(R_{1}+R_{2}\right)} \frac{V_{E E}}{R_{E}}$
- The current through the load is $I_{C}=I_{E}$.

