Operational Feedback

W		∧M^►^MM	
Types of Feedback			
Sample output	Type of input	<u>Name</u>	
Voltage	Current	Operational voltage feedback	
Current	Current	Operational current feedback	

Operational Voltage Feedback

• Sample output voltage and add it to input as current:

• If the input impedance for the amplifier A_0 is very large, no current can flow into the amplifier compared to the input and feedback, so the input must cancel the feedback.

$$i_{in} = \frac{\alpha v_{out}}{R_f}$$

Feedback Resistor

• An input resistor can set the current i_{in} .

• The input current must all go through the feedback resistor.

$$i_{in} = \frac{v_A - v_{out}}{R_f}$$

• The amplifier gain gives $v_{out} = A_0 v_A$, so: $\frac{v_{in} - v_{out}/A_0}{R_i} = \frac{v_{out}/A_0 - v_{out}}{R_f}$

LABORATORY ELECTRONICS I

Feedback Gain

• Solving for the gain with feedback:

$$A = \frac{v_{out}}{v_{in}} = \frac{1}{(R_i/R_f)(1/A_0 - 1) + 1/A_0}$$

• If $A_0 >> 1$:

$$A = \frac{-R_f}{R_i}$$

- The gain in an operational voltage feedback amplifier is negative.
- If the amplifier gain is much greater without feedback, $A_0 >> A$:

$$Av_{in} = A_0 v_A$$

$$v_{in} \gg v_A$$

• The input to the amplifier must be very small: *virtual ground*.

-₩₩-

• With a very large A_0 and v_A a virtual ground:

$$i_{in}R_f = -(i_{in} + i_{out})R_G$$
$$i_{out}/i_{in} = -(R_f + R_G)/R_G$$

Operational Amplifier

Schematic Representation

Ideal Op-Amp

- 1. Input Impedance, $Z_{in} = \infty$.
- 2. Output Impedance, $Z_{out} = 0$.
- 3. Voltage Gain, $A_0 = \infty$.
- 4. Common Mode Gain, $A_{CM} = 0$.
- 5. Offset Voltage V_{io} , if $v_+ = v_-$, $v_{out} = 0$.
- 6. Slew Rate, $S = \infty$.

Ideally, all of these are independent of temperature and power supply.

• Actual amplifier has a differential input stage with constant current sink, second stage amplifier with negative feedback for common mode signals, output stage amplifier and follower for high gain.

Input Impedance -₩₩-

• Impedance is calculated on one input when the other is ground.

$$Z_{in} = \frac{v_{in}}{i_{in}}$$

- Equal to transistor base/gate impedance with feedback.
- Bipolar input (741) 2 MΩ.
- JFET input (TL071, 081) $10^{12} \Omega$.

Input Current

~^^^^

- Bias current = common-mode input current, $I_B = (I_+ + I_-)/2$.
- The bias current causes a voltage drop across the feedback resistor.

—► _____₩___►

- Typical values: Bipolar 10-100 nA, FET 10-100 pA.
- With small feedback resistors, bias current can be neglected.
- Offset current = differential-mode input current, $I_B = (I_+ I_-)/2$.
- Typical values: $I_{io} = 0.1I_B$ to $0.5I_B$.

Output Impedance

____► ____^\\\\\\

• The output impedance is: $Z'_{out} = v_{th} / i_s$.

-^^^^

- The Thevenin output voltage is: $v_{th} = -i_{in} R_{f}$.
- With v_{out} shorted to ground, $v_A = i_{in} R_f$.
- Internally the voltage drop is $i_s Z_{out} = A_0 v_A = A_0 i_{in} R_f$.

$$Z_{out} = \frac{-i_{in}R_f}{A_0 i_{in}R_f/Z_{out}} = \frac{-Z_{out}}{A_0}$$

Voltage Gain

- Typical $A_0 = 10^4$ to 10^6 , = 80 to 120 dB.
- Gain is a function of frequency.
- Open-loop gain is measured with no feedback. Closed-loop includes the feedback, so the gain is limited by the feedback resistor.

- Op-amps act like low-pass RC filters, including a phase shift at the break frequency f_B .
- Typical maximum frequency is $f_T = 0.1$ to 10 MHz.
- For a "compensated" op-amp, $f_B = f_T / A$.

Common Mode Gain

- Typical CMRR = A_0 / A_{CM} = 60 to 120 dB.
- Corresponding gain makes A_{CM} on the order of 1.
- Input bias current adds to common-mode gain, but can be corrected.

• The bias current is pulled into the inverting input through both R_1 and R_2 . If R_3 is equal to the parallel equivalent of R_1 and R_2 the voltage drops will cancel.

Offset Voltage

- If $v_+ = v_-$, then v_{out} usually saturates to V_{CC} or V_{EE} .
- The difference $V_{io} = v_+ v_-$ needed for $v_{out} = 0$.
- Typical values are 0.1 to 10 mV, with temperature dependence 1 to 10 μ V/°C.
- "Precision" op-amps have V_{io} on the order of 10 μ V with temperature dependence less than 1 μ V/ °C.

Slew Rate

- Slew rate measures the speed that the op-amp can respond to a changing input voltage.
- Typical S = 1 to 10 V/µs. "High-speed" op-amps have S = 100 to 1000 V/µs.
- An input sine wave with $\omega = 2\pi f$ and amplitude A

 $A\cos\omega t$

has a maximum slope

 $A\omega = 2\pi A f$

The peak-to-peak voltage must be less than $S/\pi f$.

• Slew rate is particularly important in digital applications - square-waves with rapid voltage changes.