Transistor Amplifiers

- An amplifier is a four connection device
- Voltage amplifier (Thevenin equivalent)

Schematic symbol:

- Current amplifier (Norton equivalent)

- Amplifiers can also have current in and voltage out or voltage in and current out.

Common Source FET

\qquad

- DC voltage source

The FET conducts and there is a voltage divider from $V_{D D}$ to ground.

- AC signal

Input forms a high-pass filter.
No DC offset passes into v_{G}

Common Source Amplifier

\qquad

- AC voltage amplifier

DC separates from $\mathrm{AC}, V_{D S}=$ constant.
Forward transconductance g_{m} is about 10 mS .

$$
g_{m}=\left(\frac{\partial i_{D}}{\partial v_{G S}}\right)_{V_{D S}} \quad i_{D}=g_{m} v_{G S} \quad i_{d} \cong g_{m} v_{g s}
$$

C_{S} provides an AC short, so $v_{s}=0, v_{g s}=v_{i n}$.
For the AC signal: $v_{\text {out }}=v_{d}=-i_{d} R_{D}$.

- Gain: $A=v_{\text {out }} / v_{\text {in }}=-g_{m} v_{g s} R_{D} / v_{g s}=-g_{m} R_{D}$

Common Drain Amplifier

- The common drain amplifier takes output at the source

- The input impedance is very high so little current flows into the gate

$$
i_{g} \cong 0 \quad i_{s}=i_{d}
$$

- The FET has a transconductance g_{m} :

$$
i_{d}=g_{m}\left(v_{g}-v_{s}\right)
$$

Source Follower

- The circuit behaves like a voltage divider

- R_{S} and $1 / g_{m}$ form a voltage divider, if $g_{m}=10 \mathrm{mS}$, then $1 / g_{m}=100 \Omega$.
- If $R_{L} \gg 1 / g_{m}, v_{s}=v_{g}$.
- The AC signal out has the same amplitude as the input - it is a "follower".

Common Emitter

- The common emitter circuit:

- C_{1}, C_{2} form high-pass filters for the signal, the DC bias remains for the transistor.
- The AC and DC behavior of the transistor can be separated
- Common emitter input is at the base: v_{b}.

$$
v_{B}=V_{B}+v_{b}
$$

- Common emitter output is at the collector: v_{c}.

$$
v_{C}=V_{C}+v_{c}
$$

Signal Amplification

- The base-emitter junction is like a diode (assume $V_{\text {diode }}=0.6 \mathrm{~V}$)

$$
\begin{array}{cl}
v_{B}=V_{B}+v_{b} \quad v_{E}=V_{E}+v_{e} \\
v_{B}=v_{E}+0.6 \quad & V_{B}=V_{E}+0.6 \\
v_{b}=v_{e} &
\end{array}
$$

- The AC part of the emitter current is:

$$
i_{e}=\frac{v_{e}}{R_{E}}=\frac{v_{b}}{R_{E}}
$$

- The AC part of the collector current is:

$$
i_{c}=-\frac{v_{c}}{R_{C}}
$$

- Since β is large, $i_{c}=i_{e}$.

$$
\begin{aligned}
& \frac{v_{b}}{R_{E}}=-\frac{v_{c}}{R_{C}} \\
& v_{c}=-\frac{R_{C}}{R_{E}} v_{b}
\end{aligned}
$$

- This is a voltage amplifier, with gain $A=-R_{C} / R_{E}$.
- Negative gain means the output has inverted sign.
- Selecting the gain provides the remaining constraints to select the circuit bias resistors.

Designing an Amplifier

\qquad

- Select a gain of -10

$$
\begin{array}{ll}
R_{C}=10 R_{E} & R_{C}+R_{E}=2.5 \mathrm{k} \Omega \\
R_{E}=230 \Omega & R_{C}=2.3 \mathrm{k} \Omega \\
R_{2}=10 R_{E}+2 \mathrm{k} \Omega & R_{1}=48 \mathrm{k} \Omega-10 R_{E} \\
R_{2}=4.3 \mathrm{k} \Omega & R_{1}=46 \mathrm{k} \Omega
\end{array}
$$

- The common emitter circuit with resistances rounded off:

- Double check values:

$$
\begin{aligned}
& V_{B}=1.36 \mathrm{~V} \quad V_{E}=0.8 \mathrm{~V} \\
& V_{C}=7.4 \mathrm{~V} \quad V_{C E}=6.6 \mathrm{~V} \\
& \text { Gain }=-R_{C} / R_{E}=-10
\end{aligned}
$$

Emitter Stability

- Without an emitter capacitor, the emitter voltage increases with increasing base voltage. This reduces the gain since $V_{B E}$ doesn't increase enough.

- A capacitor C_{E} in parallel with R_{E} is a low-pass filter, and should block all signal frequencies.
- Assume for design signal frequencies from 1 kHz to 100 kHz .

$$
\omega_{b}=\frac{1}{R_{E} C_{E}} \quad C_{E} \gg \frac{1}{2 \pi f R_{E}}=0.69 \mu F
$$

- However this also effectively puts v_{e} at ground, since the capacitor looks like low impedance to AC.

Stabilized Amplifier

- There is a resistance from the base to the emitter that is inversely proportional to the collector current.

$$
R_{B E}=\frac{2.6(k \Omega \cdot m A)}{I_{C}}
$$

- The AC part of the base current is:

$$
i_{b}=\frac{v_{b}}{R_{B E}}
$$

- The AC part of the collector current is:

$$
i_{c}=-\frac{v_{c}}{R_{C}}
$$

- Since $i_{c}=\beta i_{b}$:

$$
\begin{gathered}
\frac{v_{b}}{R_{B E}}=-\frac{v_{c}}{\beta R_{C}} \\
v_{c}=-\frac{\beta R_{C}}{R_{B E}} v_{b}=-\frac{\beta I_{C} R_{C}}{2.6 V} v_{b}
\end{gathered}
$$

- This is a voltage amplifier, with gain $A=-\beta I_{C} R_{C} / 2.6 \mathrm{~V}$.
- This gives a gain that is proportional to β for the transistor.

