**Transistor Amplifiers** 

- An amplifier is a four connection device
- Voltage amplifier (Thevenin equivalent)



Schematic symbol:



• Current amplifier (Norton equivalent)



• Amplifiers can also have current in and voltage out or voltage in and current out.

**Common Source FET** 





The FET conducts and there is a voltage divider from  $V_{DD}$  to ground.

• AC signal



Input forms a high-pass filter.

No DC offset passes into  $v_G$ .

**Common Source Amplifier** 





DC separates from AC,  $V_{DS}$  = constant.

Forward transconductance  $g_m$  is about 10 mS.

$$g_m = \left(\frac{\partial i_D}{\partial v_{GS}}\right)_{V_{DS}}$$
  $i_D = g_m v_{GS}$   $i_d \cong g_m v_{gs}$ 

 $C_S$  provides an AC short, so  $v_s = 0$ ,  $v_{gs} = v_{in}$ . For the AC signal:  $v_{out} = v_d = -i_d R_D$ .

• Gain:  $A = v_{out}/v_{in} = -g_m v_{gs} R_D / v_{gs} = -g_m R_D$ 

## LABORATORY ELECTRONICS I







-~~~

• The input impedance is very high so little current flows into the gate

$$i_g \cong 0$$
  $i_s = i_d$ 

• The FET has a transconductance  $g_m$ :

$$i_d = g_m(v_g - v_s)$$

Source Follower



• The circuit behaves like a voltage divider



- $R_S$  and  $1/g_m$  form a voltage divider, if  $g_m = 10$  mS, then  $1/g_m = 100 \Omega$ .
- If  $R_L >> 1/g_m$ ,  $v_s = v_g$ .
- The AC signal out has the same amplitude as the input it is a "follower".

**Common Emitter** 



• The common emitter circuit:



- $C_1, C_2$  form high-pass filters for the signal, the DC bias remains for the transistor.
- The AC and DC behavior of the transistor can be separated
- Common emitter input is at the base:  $v_b$ .

$$v_B = V_B + v_b$$

• Common emitter output is at the collector:  $v_c$ .

$$v_C = V_C + v_c$$

LABORATORY ELECTRONICS I

Signal Amplification



• The base-emitter junction is like a diode (assume  $V_{\text{diode}} = 0.6 \text{ V}$ )

$$v_B = V_B + v_b \qquad v_E = V_E + v_e$$
$$v_B = v_E + 0.6 \qquad V_B = V_E + 0.6$$
$$v_b = v_e$$

• The AC part of the emitter current is:

$$i_e = \frac{v_e}{R_E} = \frac{v_b}{R_E}$$

• The AC part of the collector current is:

$$i_c = -\frac{v_c}{R_C}$$

• Since  $\beta$  is large,  $i_c = i_e$ .

$$\frac{v_b}{R_E} = -\frac{v_c}{R_C}$$
$$v_c = -\frac{R_C}{R_E}v_b$$

- This is a voltage amplifier, with gain  $A = -R_C / R_E$ .
- Negative gain means the output has inverted sign.
- Selecting the gain provides the remaining constraints to select the circuit bias resistors.

**Designing an Amplifier** 



• The common emitter circuit with resistances rounded off:



• Double check values:

 $V_B = 1.36 \text{ V}$   $V_E = 0.8 \text{ V}$   $I_E = 3.5 \text{ mA} = I_C$  $V_C = 7.4 \text{ V}$   $V_{CE} = 6.6 \text{ V}$ Gain =  $-R_C / R_E = -10$ 

LABORATORY ELECTRONICS I

**Emitter Stability**  $\sqrt{\sqrt{2}}$ 

• Without an emitter capacitor, the emitter voltage increases with increasing base voltage. This reduces the gain since  $V_{BE}$  doesn't increase enough.



- A capacitor  $C_E$  in parallel with  $R_E$  is a low-pass filter, and should block all signal frequencies.
- Assume for design signal frequencies from 1 kHz to 100 kHz.

$$\omega_b = \frac{1}{R_E C_E} \qquad C_E \gg \frac{1}{2\pi f R_E} = 0.69 \mu F$$

• However this also effectively puts  $v_e$  at ground, since the capacitor looks like low impedance to AC.

Stabilized Amplifier 

• There is a resistance from the base to the emitter that is inversely proportional to the collector current.

$$R_{BE} = \frac{2.6(k\Omega \cdot mA)}{I_C}$$

• The AC part of the base current is:

$$i_b = \frac{v_b}{R_{BE}}$$

• The AC part of the collector current is:

$$i_c = -\frac{v_c}{R_C}$$

• Since  $i_c = \beta i_b$ :

$$\frac{v_b}{R_{BE}} = -\frac{v_c}{\beta R_C}$$
$$v_c = -\frac{\beta R_C}{R_{BE}} v_b = -\frac{\beta I_C R_C}{2.6V} v_b$$

- This is a voltage amplifier, with gain  $A = -\beta I_C R_C / 2.6$  V.
- This gives a gain that is proportional to  $\beta$  for the transistor.