Electronic Switches

Switches

- A switch can be used to allow current to flow (closed) or stop (open).
- A switch can be used to direct current into different circuit paths.

Switches are defined in terms of the number of poles (separate switching elements) and number of throws (number of switch positions).

- Mechanical switches will "bounce". This appears as fluctuations off and on with a period of 1-10 ms.

FET Pinch-off

- FETs operate with two types of behavior: ohmic and pinch-off.

- A JFET is shown above, with a gate threshold of about -5 V .
- MOSFETs have positive gate thresholds 1-2 V.

FET Saturation

- At low $V_{D S}, R_{D S}=1 / 2 k\left(V_{G S}-V_{T}\right), V_{T}$ is a gate threshold.

$$
I_{D}=\frac{V_{D S}}{R_{D S}\left(V_{G S}\right)}
$$

- Linear region fails as $V_{D S}$ approaches $\left(V_{G S}-V_{T}\right)$
- At $V_{D S}=\left(V_{G S}-V_{T}\right)$:

$$
\begin{gathered}
I_{D}=2 k V_{D S}\left[\left(V_{G S}-V_{T}\right)-V_{D S} / 2\right] \\
I_{D}=2 k\left(V_{G S}-V_{T}\right)\left[\left(V_{G S}-V_{T}\right)-\left(V_{G S}-V_{T}\right) / 2\right] \\
I_{D}=2 k\left[\left(V_{G S}-V_{T}\right)^{2} / 2\right] \\
I_{D}=k\left(V_{G S}-V_{T}\right)^{2}
\end{gathered}
$$

This is the saturation region

- In saturation, I_{D} depends on the square of $V_{G S}$.
- Saturation occurs when V_{DS} is too large to continue to supply more current through the transistor.

FET Switches

- Single MOSFET Switch

The FET acts like a single-pole single-throw switch.

- Switch at +10 V: $V_{G S}=10 \mathrm{~V}, R_{D S}=100 \Omega$, so $I_{D}=50 \mathrm{~mA}$, and the lamp is on.
- Switch at $0 \mathrm{~V}: V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$, and the lamp is off.

Analog Switch

- MOSFET is controlled either ON or OFF

There is a voltage divider with $R_{D S}$ and the $47 \mathrm{k} \Omega$ resistor.
When the gate is ground or negative, $R_{D S}>10^{10} \Omega v_{\text {out }}<0.0001 v_{\text {in }}$.
When the gate is $+15 \mathrm{~V}, R_{D S}=100 \Omega, v_{\text {out }}=0.998 v_{\text {in }}$.

- The MOSFET switch is bidirectional, like a mechanical switch

The gate is not fully functional if the signal is near $V_{\text {control }}$.

Transmission Gate

- Add a parallel MOSFET of opposite type "complementary MOSFET"
- CMOS Switch

- The extra pair of MOSFETs "invert" the value of $V_{\text {control }}$.
- Quad CMOS SPST Integrated Circuit

Bipolar Transistor Saturation

- Output (V-I for collector to emitter) looks like a current source

Dashed line is a curve of constant power $I_{C} V_{C E}$.
Shaded region corresponds to area where $V_{C E}$ may drop no lower for a given I_{C}.

- Like the FET this is saturation.

Voltages at saturation are typically 0.1 to 0.3 V .

Common Emitter Switch

- Switch open: $I_{B}=0$ so $I_{C}=0$, and the lamp is off.
- Switch closed: $V_{B}=0.6 \mathrm{~V}, I_{B}=9.4 \mathrm{~mA}$.

The rule is $I_{C}=\beta I_{B}$ so $I_{C}=940 \mathrm{~mA}$.
But the lamp will only draw 100 mA at 10 V .
The collector goes as low as it can (typically 0.1 V) and sinks 100 mA .

Switch Using Transconductance

- Correct gain is $-R_{C} / r_{e}=-R_{C} I_{C} / 25 \mathrm{~mA}-\Omega$
- At the operating point, $R_{C}=10 \mathrm{~V} / 100 \mathrm{~mA}=100 \Omega$
- The gain is $(100 \Omega)(100 \mathrm{~mA}) / 25 \mathrm{~mA}-\Omega=-400$
- The base-collector junction is a diode with a diode drop $<0.25 \mathrm{~V}$.

The reverse current is I_{S} :

$$
I_{C}=I_{S}\left(e^{V_{B E} / V_{T}}-1\right)
$$

- The base-emitter voltage is about 0.6 V
- The correct $h_{f e}=I_{C} / I_{B}=100 \mathrm{~mA} / 9.4 \mathrm{~mA} \cong 10$

Two-state Electronics

- Common Emitter

- When $V_{\text {in }}=0 \mathrm{~V}$ the transistor switch is open (off) and $V_{\text {out }}=20 \mathrm{~V}$.
- As $V_{\text {in }}$ increases above 0.6 V then transistor turn on and current begins to flow, lowering $V_{\text {out }}$ towards ground.
The base of the transistor will hold at 0.7 V
When $V_{\text {in }}=0.9 \mathrm{~V}, I_{B}=0.2 \mathrm{~mA}$ and $I_{C}=\beta I_{B}=20 \mathrm{~mA}$.
The voltage drop to the collector would now be 20 V and the transistor will be on and $V_{\text {out }}=0.2 \mathrm{~V}$.
- With the exception of the range from $0.6 \mathrm{~V}<V_{\text {in }}<0.8 \mathrm{~V}$, this circuit has only two output states.

LED Driver

- Current should be either on or off.
- Typically a transistor switch, logic gate, or saturated op-amp will drive the LED.
- Use $V_{C C}=+5 \mathrm{~V}, V_{L E D}=1.7 \mathrm{~V}, I_{L E D}=10 \mathrm{~mA}$.

$$
R=\frac{V_{C C}-V_{L E D}}{I_{L E D}}=330 \Omega
$$

- Driving circuit ($V_{\text {in }}>0$, LED is on)

