Bipolar Junction Transistors

Diffusion at a p-n Junction

- Forward-biased p-n junction

- Electrons move into p-type material and are picked up by holes.
- Mean free time in the p-type material is related to the density of holes.
- In typical doped silicon $\tau=10^{-3}$ to $10^{-6} \mathrm{~s}$ to recombine, but the time between scattering is about τ $=10^{-12} \mathrm{~s}$.
- The diffusion time is proportional to the diffusion length squared

$$
L \propto \sqrt{\tau}
$$

- The mean free path for scattering is about $0.1 \mu \mathrm{~m}$, so the mean free path for recombination is about $100 \mu \mathrm{~m}$.

Two p-n Junctions

- An n-p-n device has two p-n junctions

- Electrons in the n-type emitter are at the most negative potential.

The first p-n junction is biased so electrons flow into the base.
Some electrons will recombine in the base, others make it across the base without recombining.

- The second p-n junction is reverse-biased and has no barrier for electrons flowing from p-type to n-type material.
- Electrons that make it to the collector will immediately enter the collector to continue as current.
- A pnp transistor is very similar except that the current is due to holes.

Current Flow in a BJT

- The current in the collector is proportional to the emitter current reduced by electrons absorbed by the base.

$$
I_{C}=\alpha I_{E}+I_{C O}
$$

α is the fraction of electrons able to get through the base to the collector.
$I_{c o}$ is the reverse current due to the normal base-collector junction, but this is very small.

- An ideal junction would have $\alpha=1$.

Real transistors have $\alpha=0.95$ to 0.99 .

- α is best for thin bases or lightly doped bases.
- If the base doping is equal to the emitter doping then half the emitter current would be due to base carriers, and α could not exceed 0.5 .

BJTs as Circuit Elements

- Schematic symbol:

- Transistor biasing:

Diode Model

- The transistor can be viewed as two diodes

- A transistor can be checked with an ohmmeter
- Forward current I_{BE} is like a diode, exponential I with V over any orders of magnitude
- Typical currents I_{C} are mA at 0.6 V in $\mathrm{Si}(0.25 \mathrm{~V}$ in Ge$)$
- V_{CB} is limited by reverse breakdown like a diode: $10-20 \mathrm{~V}$ typically.
- Transistor limits $\mathrm{V}_{\mathrm{CE} \text { max }}$ and $\mathrm{P}_{\text {max }}=\mathrm{I}_{\mathrm{C}} \mathrm{V}_{\mathrm{CE}}$

Collector Current

The collector current I_{C} is not like a diode!

- Use Kirchoff's law at the junction:

$$
I_{E}=I_{B}+I_{C}
$$

- Include the effect of carriers through the base:

$$
I_{E}=I_{B}+\alpha I_{E}+I_{C O} \cong I_{B}+\alpha I_{E}
$$

- The relation between base current and emitter current is:

$$
I_{E}=\frac{1}{1-\alpha} I_{B}
$$

- And the relation between base current and collector current is:

$$
I_{C}=\frac{\alpha}{1-\alpha} I_{B}=\beta I_{B}
$$

Current Model

- A reverse bias diode looks like a current source/sink until breakdown
- Treat the C-E junction as a current source:

BJT Transistor Rules

1. $\mathbf{V}_{\mathbf{C}}>\mathbf{V}_{\mathrm{E}}$ (npn), $\mathrm{V}_{\mathrm{C}}<\mathrm{V}_{\mathrm{E}}$ (pnp)
2. $B-E$ and $B-C$ junctions are like diodes
3. There are $I_{C \text { max }}, I_{B \max }$, and $V_{B E \text { max }}$ like diodes
4. $\mathbf{I}_{\mathbf{C}}=\beta \mathbf{I}_{\mathbf{B}}=\mathbf{h}_{\mathrm{fe}} \mathbf{I}_{\mathbf{B}}$

Voltage - Current Curves

- Two graphs determine transistor properties.
- Input (V-I for base to emitter) is a typical diode graph

Different curves depend on V_{CE} biasing

- Output (V-I for collector to emitter) looks like a current source Different curves depend on I_{B}

- Selecting V_{BE} and V_{CE} determines the behavior of the transistor

Beta Factor

- The relation between base current and collector current is:

$$
I_{C}=\beta I_{B}
$$

- Output transistor curves show the amplification factor β.
- Compare the ratio of I_{B} to I_{C} in the region of constant current.

In the above example, as I_{B} goes from $20 \mu \mathrm{~A}$ to $60 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}$ goes from 2 mA to 6 mA . The ratio 4 mA $/ 40 \mu \mathrm{~A}=100=\beta$.

Common Emitter

- The emitter is in common to input and output.

$$
\begin{aligned}
& V_{C}=V_{C C}-I_{C} R_{L} \\
& V_{B}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C} \\
& V_{E}=I_{E} R_{E} \cong I_{C} R_{E}
\end{aligned}
$$

- From the transistor rules:

$$
\begin{gathered}
V_{E}=V_{B}-0.6 V \\
I_{C}=\left(V_{B}-0.6 V\right) / R_{E}
\end{gathered}
$$

pnp Common Emitter

- A pnp-transistor is a source of current instead of a current sink.

- With the pnp the load can be directly attached to ground if the power supply is positive.
- Current sources can also be biased by diodes and zeners.

Zener Diode Regulation

- A single zener diode and resistor will regulate voltage:

- Power consumption is based on the current through the zener:

$$
P_{Z}=\left(\frac{V_{\text {in }}-V_{\text {out }}}{R}-I_{\text {out }}\right) V_{Z}
$$

- Consider the following requirements:

$$
\begin{aligned}
& V_{Z}=+10 \mathrm{~V}, \\
& I_{\text {out }}<100 \mathrm{~mA}, \\
& V_{\text {in }}=20-25 \mathrm{~V} .
\end{aligned}
$$

The zener needs at least 10 mA to operate :
$R<(20-10) \mathrm{V} / 110 \mathrm{~mA}<100 \Omega$

Common Collector Follower

- Combine a follower and a zener:

$$
V_{o u t}=V_{Z}-0.6 \mathrm{~V}
$$

- The current flows through R_{C} so R can be large and I_{Z} is small.
- As before, consider $V_{Z}=+10.6 \mathrm{~V}, V_{\text {in }}=20-25 \mathrm{~V}$. The zener needs at least 10 mA to operate and R $<(20-10) \mathrm{V} / 10 \mathrm{~mA}<1 \mathrm{k} \Omega$.
- The base current is negligible.

$$
P_{Z}=\left(\frac{25 \mathrm{~V}-10.6 \mathrm{~V}}{680 \Omega}-0 \mathrm{~mA}\right) 10.6 \mathrm{~V}=0.22 \mathrm{~W}
$$

- For the transistor, $I_{\text {out }}<100 \mathrm{~mA}$.
- The maximum power dissipation in R_{C} or the transistor is $P=I V=(0.1 \mathrm{~A})(15 \mathrm{~V})=1.5 \mathrm{~W}$

