Field Effect Transistors

Electric Fields at a Junction

- Forward-biased p-n junction

- The field and potential in the semiconductor is

 \[E = \frac{N_{ex}}{\varepsilon_r \varepsilon_0} \]
 \[V = \frac{N_{ex}^2}{2 \varepsilon_r \varepsilon_0} \]

- The depth of depletion in the semiconductor is

 \[D_n = \sqrt{\frac{2 \varepsilon_r \varepsilon_0 (V_n + V)}{N_n e}} \]
 \[D_p = \sqrt{\frac{2 \varepsilon_r \varepsilon_0 (V_p + V)}{N_p e}} \]
p-n Junction Sandwich

- An n-type semiconductor sandwiched in a p-type material, with reverse bias

- The depth of the depletion is

\[
D_n = \sqrt{\frac{2\varepsilon_r\varepsilon_0 (V_{GC} + V_0)}{N_n e}}
\]

- The resistance \(R \) in the channel is based on the resistivity \(\rho \), length \(L \) and cross sectional area \(A \):

\[
R = \rho L / A
\]

- When the area is reduced by increasing the voltage, the resistance increases

\[
R = R(V_{GC})
\]
Junction Field Effect Transistor

- JFET schematic symbol:

- The channel in a field effect transistor has a finite length and a measurable resistance, and it can be treated like a resistor in a circuit.
- The drain and source are connected to two ends of the channel.
- The gate forms a diode with the channel.
- The gate impedance is a reverse-biased diode so it is large: $> 10^9 \, \Omega$.
JFET Connections

- The bias on the gate creates a variable resistor in the channel.

- The voltage between the gate and source controls the channel.

- The voltage between the source and drain creates the current through the channel

\[I_D = \frac{V_{DS}}{R(V_{GS})} \]
Field Effect Pinch Off

• For larger V_{DS} the channel is narrower at the drain than at the gate.

$$D_S \propto \sqrt{V_{GS} + V_0}$$

$$D_D \propto \sqrt{V_{DS} + V_{GS} + V_0}$$

• Eventually the channel is restricted to give a constant current I_D.

• This is called field effect pinch-off. If too large, the reverse-bias diode breaks down.
JFET Voltage - Current Curves

- Curves are for specific \(V_{GS} \) and compare \(I_D \) to \(V_{DS} \).

- \(V_{GS} \) is reversed bias so \(V_{GS} < 0 \).

- In the ohmic region:

\[
1/R_{DS} = I_D/V_{DS} = 2k[(V_{GS} - V_{TR}) - V_{DS}/2]
\]

\[
I_D = 2kV_{DS}[(V_{GS} - V_{TR}) - V_{DS}/2]
\]

\(V_{TR} \) is the threshold voltage for operation

\(k \) depends on the FET, varies with temperature \((T^{-3/2}) \)
Transconductance

• In the pinch-off (saturation) region:

\[I_D = k(V_{GS} - V_{TR})^2 \]

• The slope of the curve \(I_D \) vs. \(V_{GS} \) at constant \(V_{DS} \) is defined as \(g_m \).

• The transconductance:

\[g_m = \left(\frac{\partial i_D}{\partial V_{GS}} \right)_{V_{DS}} \]

This is typically 1-30 mS.
MOSFET

Metal-Oxide-Semiconductor FET

• Depletion n-channel MOSFET

• The metal contact at the gate is separated by an insulating layer

• Very high input impedance \((10^{14} \, \Omega)\)

• With no gate - low resistance from source to drain, negative gate the resistance increases

• Base bias affects channel width, used to set operating point for gate

• Schematic symbol:

```
  G    D    B
S --> n-channel

  G    D    B
S --> p-channel
```
Enhancement MOSFET

- Enhancement n-channel MOSFET

- Depending on the sign of V_{DS} either source-base or drain-base is reverse biased.
- The source and drain are heavily doped to prevent field penetration into the n-type material.
- Positive voltage on the gate induces a field into the base. When the p-type conduction band is lowered to the n-type band current flows into the p-type material and a channel is formed.
- Schematic symbol:
Current Source

Common Source

- The source and gate are grounded, and the drain has a load.

\[I_D = k(V_{GS} - V_T)^2 = k(V_T)^2 \]

- If \(V_{DS} > 2 \text{ V} \), the FET is in the pinch-off region and delivers a constant current. The limit is \(V_{DD} - i_D R_L > 2 \text{ V} \).

- These two-terminal devices are sold as current regulators with a range from 0.1 - 10 mA.
- Disadvantages are that they are temperature dependent (0.4% / °C)
- Output current can vary with output voltage.
Bias Resistor

- The gate is grounded, but a resistor biases the source.

- The self-biased FET operates at

\[V_{GS} = i_D R \]

This is negative, and reduces the FET current from the maximum.

- Current variations are reduced because of the feedback through \(R \).
- With a fixed resistive load this provides a constant voltage.