Semiconductors
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Potential Well

The simple approximation for a bound electron is a 1-dimentional well of potential energy V(x)
with width L and depth E.
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Consider electrons with total energy £ < V.

The kinetic energy is E—V(x) and is positive only inside the well (0 <x <L), so a classical electron
cannot go outside the well.

Since the wave must be 0 at the boundaries of the well the wavelength must have an integral
division of 2L:
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Filling the Potential Well
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 The kinetic energy associated with a particular wave is:
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» The Fermi energy (Er) i1s found for N, electrons filling the lowest energy states with two electrons
per state:
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* Graphically:
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* The energy to remove one electron 1s Vy-Er

» The unit of potential in electronics: electron volt (eV) = 1.6 x 10719 ]

 In copper, approximately:

Nyg=4x10",L=25x10""m, Ex=15¢V.
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Periodic Potential Well
T . T

 Crystals have positive nuclei at regular intervals a,.
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« Energy levels are filled until the period of the wave matches the periodic potential, A = 2q,.

» Waves that line up with the electron at the positive nuclei have a lower energy than waves that line
up with the electrons away from the positive nuclei.

* There are no waves between those two, so an energy gap appears.

» No electrons can have energies in the gap.
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Thermal Distribution

T L S
* Unit of temperature: kelvin (K)

» Electron energies in a material are a function of temperature (7))

B 1
NE) = o E—Ep)/kT
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Boltzman’s constant: k=138 x 1023 /K =28.62 x 10~ eV/K
At room temperature, k7 = 0.025 eV.

« At any temperature there can be some electrons in states with energies greater than Ex as long as
those states are not in an energy gap.

» The Fermi-Dirac probability for an electron to be at an energy in excess of £ decreases as the

energy increases.
Probability (f)
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Energy Bands

- W - -

» Real materials have many bands separated by energy gaps

» There are two cases, with the Fermi energy in a band or a gap

Energy Energy
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 Ifthe Fermi energy is in an energy band, the band is called a conduction band, and the material is a
conductor.

» Ifthe Fermi energy is in an energy gap, the highest band is called a valence band, and the material
is an insulator.
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Semiconductor Bands
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» Semiconductors are insulators with small gaps between the valence band and empty band.
Energy

Empty Band E, = 1.1 eV in Silicon (Si)

Er—] E, = 0.7 eV in Germanium (Ge)

uneana

» Thermal excitation can move some electrons at room temperature

Distance

0.55¢V) = L ~107

o(0.55¢1)/(0.025¢V) 1 1

 Electrons that move up into the empty band can form a current

» The holes that are left by the excited electrons can also conduct current as positive charges.
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Doping
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« Addition of impurities can create additional states within an energy gap.

« Typically add 1077 to 10710 as a fraction of impurity to silicon

» Addition of P, As or An add an additional electron: n-type
» Addition of B, In add an additional hole: p-type

» FE can be controlled to form a very small gap
Energy Energy
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Junctions
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Metal-Metal Junction

» Each metal has its own Fermi energy and potential, separately they are neutral.

Energy
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» Ifplaced in contact electrons will move from A to B until the energy levels are equal, but the
metals become charged.
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Metal-Semiconductor Junction
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* The two materials begin with different Fermi energies an
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d potentials:
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* Once the materials a ontact electrons flow from the semiconductor into the metal:




Forward Current

LYY A —— A

Thermal electrons will flow in both directions if £, > Ep:

_ 1  (E—En/kT
fIE) = ~e F
SE—Ep)/KT |

;= J.Oe—(EB —Ep)/kT

Currents are equal and opposite so there is no net current

With an external potential applied:

n-type semiconductor meta

Net current flows from metal to semiconductor

This is forward biased, eV is positive.
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Reverse Current
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» With the potential reversed, el is negative

j = e EvEr= VKT (Ey=EQ)/KT
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n-type semiconductor

The electrons in the metal see a constant barrier

The electrons in the semiconductor see a variable barrier

Net current density:

* For a junction with area A4
I = jer—EB—EF/kT(eeV/kT_ 1) = [O(eeV/kT_ 1)

» Net current has an exponential dependence on applied voltage and temperature.
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p-n Junction
T — W W

n-type has ionized positive donors but no free electrons

p-type has ionized acceptors but no free holes

* Fermi energies are matched

E ean

n-type semiconductor p-type semiconductor

N is the number density of donor atoms

g, 1s the dielectric of the semiconductor

n - 2e gV, - Zsrson
n A/ N, e p A/ Npe
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VI Curve
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Current-Voltage Curve:

* At room temperature, kT/e = 2.58 x 102V

I = Io(eeV/kT_ 1) — IO(eV/O.O258V_ 1)

« Typically, /[ = 0.1 nA.
» Reverse current is very small, but with 1/40 V over 1 A can flow in the forward direction.
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