
Semiconductors
Potential Well

• The simple approximation for a bound electron is a 1-dimentional well of potential energy V(x) 
with width L and depth E.

• Consider electrons with total energy E < V0.

• The kinetic energy is EV(x) and is positive only inside the well (0 < x < L), so a classical electron 
cannot go outside the well.

• Since the wave must be 0 at the boundaries of the well the wavelength must have an integral 
division of 2L:
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Filling the Potential Well
• The kinetic energy associated with a particular wave is:

• The Fermi energy (EF) is found for N0 electrons filling the lowest energy states with two electrons 
per state:

• Graphically:

• The energy to remove one electron is V0-EF.

• The unit of potential in electronics: electron volt (eV) = 1.6 x 10-19 j

• In copper, approximately: 

N0 = 4 x 107, L = 2.5 x 10-10 m, EF = 1.5 eV.
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Periodic Potential Well
• Crystals have positive nuclei at regular intervals a0.

• Energy levels are filled until the period of the wave matches the periodic potential,  = 2a0.

• Waves that line up with the electron at the positive nuclei have a lower energy than waves that line 
up with the electrons away from the positive nuclei.

• There are no waves between those two, so an energy gap appears.

• No electrons can have energies in the gap.
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Thermal Distribution
• Unit of temperature: kelvin (K)

• Electron energies in a material are a function of temperature (T)

Boltzman’s constant:  k = 1.38 x 10-23 j/K = 8.62 x 10-5 eV/K

At room temperature, kT = 0.025 eV.

• At any temperature there can be some electrons in states with energies greater than EF as long as 
those states are not in an energy gap.

• The Fermi-Dirac probability for an electron to be at an energy in excess of EF decreases as the 
energy increases.
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Energy Bands
• Real materials have many bands separated by energy gaps

• There are two cases, with the Fermi energy in a band or a gap

• If the Fermi energy is in an energy band, the band is called a conduction band, and the material is a 
conductor.

• If the Fermi energy is in an energy gap, the highest band is called a valence band, and the material 
is an insulator.
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Semiconductor Bands
• Semiconductors are insulators with small gaps between the valence band and empty band.

• Thermal excitation can move some electrons at room temperature

• Electrons that move up into the empty band can form a current

• The holes that are left by the excited electrons can also conduct current as positive charges.
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Doping
• Addition of impurities can create additional states within an energy gap. 

• Typically add 10-7 to 10-10 as a fraction of impurity to silicon

• Addition of P, As or An add an additional electron: n-type

• Addition of B, In add an additional hole: p-type

• EF can be controlled to form a very small gap
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Junctions
Metal-Metal Junction

• Each metal has its own Fermi energy and potential, separately they are neutral.

• If placed in contact electrons will move from A to B until the energy levels are equal, but the 
metals become charged.
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Metal-Semiconductor Junction
• The two materials begin with different Fermi energies and potentials:

• Once the materials are in contact electrons flow from the semiconductor into the metal:
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Forward Current
• Thermal electrons will flow in both directions if Ee > EB:

• Currents are equal and opposite so there is no net current

• With an external potential applied:

• Net current flows from metal to semiconductor

• This is forward biased, eV is positive.
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Reverse Current
• With the potential reversed, eV is negative

• The electrons in the metal see a constant barrier

• The electrons in the semiconductor see a variable barrier

• Net current density:

• For a junction with area A

• Net current has an exponential dependence on applied voltage and temperature.
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p-n Junction
• n-type has ionized positive donors but no free electrons

• p-type has ionized acceptors but no free holes

• Fermi energies are matched

• N is the number density of donor atoms

• r is the dielectric of the semiconductor
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VI Curve
Current-Voltage Curve:

• At room temperature, kT/e = 2.58 x 10-2 V

• Typically, I0 = 0.1 nA.

• Reverse current is very small, but with 1/40 V over 1 A can flow in the forward direction.
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