## Signal Phase



- Voltage (E) through an inductor (L) leads the current (I).

- Current (I) through a capacitor (C) leads the voltage (E).

$$
v=\frac{1}{j \omega C} i
$$


-"ELI the ICE man."

## RC Filter Phase



- Example: the low pass filter:


$$
\begin{gathered}
v_{0}=R i+\frac{1}{C} \int i d t \\
v_{C}=\frac{1}{C} \int i d t
\end{gathered}
$$

$$
\text { If } i=\cos (\omega t), v_{C}=\sin (\omega t)=\cos (\omega t-\pi / 2)
$$



The current is peaking ahead of the voltage - hence current leads.

## Complex Phase



- Phase in terms of complex impedance

$$
\frac{v_{C}}{v_{0}}=\frac{1 / j \omega C}{(1 / j \omega C)+R}=\frac{1-j \omega R C}{1+\omega^{2} R^{2} C^{2}}
$$

$$
\begin{aligned}
& B=\frac{1}{1+\omega^{2} R^{2} C^{2}} \\
& \sqrt{B^{2}+C^{2}} \\
& j C=\frac{-j \omega R C}{1+\omega^{2} R^{2} C^{2}} \\
& \phi=\operatorname{atan} \frac{-\omega R C}{1}=\operatorname{atan}(-\omega R C)
\end{aligned}
$$

- The phase depends on the frequency

At high frequency, $\phi$-> -90
At $\omega=1 / R C, \phi=-45$
At low frequency, $\phi$-> 0

## Phase Shifting Network



- Divider and filter

- Consider each part separately:

$$
\begin{gathered}
v_{D}=\frac{R_{D}}{R_{D}+R_{D}} v_{\text {in }}=\frac{v_{\text {in }}}{2} \\
v_{F}=\frac{1 / j \omega C}{(1 / j \omega C)+R} v_{\text {in }}=\frac{v_{\text {in }}}{1+j \omega R C} \\
v_{\text {out }}=\left(\frac{1}{1+j \omega R C}-\frac{1}{2}\right) v_{\text {in }}=\left(\frac{2-(1+j \omega R C)}{2+2 j \omega R C}\right) v_{\text {in }}=\frac{1}{2}\left(\frac{1-j \omega R C}{1+j \omega R C}\right) v_{\text {in }} \\
v_{\text {out }}=\frac{1}{2} e^{-2 j \phi} v_{\text {in }} \quad \tan \phi=\omega R C
\end{gathered}
$$

- Changing the resistance, $R$, changes the phase but not the amplitude.


## Double Differentiator

- Two high-pass filters in series

- The solution for $t \ll R_{i} C_{i}$ is the combination: $v_{\text {out }}=R_{2} C_{2} \frac{d\left(R_{1} C_{1} \frac{d v_{\text {in }}}{d t}\right)}{d t}=R_{1} C_{1} R_{2} C_{2}\left(\frac{d^{2} v_{\text {in }}}{d t^{2}}\right)$
- Pulse is differentiated twice



## Speed-up Capacitor



- A resistor divider with $\mathrm{R}_{1}$ replaced with $\mathrm{Z}_{1}$ which includes a capacitor.

$$
Z_{1}=\frac{R / j \omega C}{R+1 / j \omega C}=\frac{R}{j \omega R C+1}
$$

- Consider that a capacitor looks like an open connection for low $f$ and a short circuit at high $f$.
- The expectation is that at high $f$, the divider has $\mathrm{Z}_{1}=0$.

$$
\begin{gathered}
v_{\text {out }}=\frac{R_{2}}{R_{2}+R_{1} /\left(j \omega R_{1} C+1\right)} v_{i n}=\frac{j \omega R_{1} R_{2} C+R_{2}}{j \omega R_{1} R_{2} C+R_{2}+R_{1}} v_{\text {in }} \\
A=\sqrt{\frac{\left(\omega R_{1} R_{2} C\right)^{2}+\left(R_{2}\right)^{2}}{\left(\omega R_{1} R_{2} C\right)^{2}+\left(R_{2}+R_{1}\right)^{2}}}
\end{gathered}
$$

- For $\omega \ll 1 / \mathrm{R}_{1} \mathrm{C}, \mathrm{A}=\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) ; \omega \gg 1 / \mathrm{R}_{1} \mathrm{C}, \mathrm{A}=1$.
- High frequencies are enhanced, so a pulse edge becomes sharper.


## High Frequency Effects



- Actual resistive voltage dividers have some small capacitance between wires.

- This acts as a low-pass filter and attenuates high frequencies.


## Compensated Voltage Divider

- Precisely selected capacitors can compensate for this effect.


