Transients

Transient Response of a Capacitor

- Kirchoff's law for a single loop: $V_{0}=V_{R}+V_{C}$
- The voltage drop for the resistor is $V_{R}=I R$, and for the capacitor is $V_{C}=Q / C$.
- Using the relationship between charge and voltage

$$
\begin{gathered}
I=\frac{d Q}{d t} \\
V_{0}=R \frac{d Q}{d t}+\frac{1}{C} Q
\end{gathered}
$$

- The solution of the differential equation for Q, then I and V_{C} :

$$
\begin{gathered}
Q=Q_{0} e^{-t / R C}+V_{0} C\left(1-e^{-t / R C}\right) \\
I=-\frac{Q_{0}}{R C} e^{-t / R C}+\frac{V_{0}}{R} e^{-t / R C}=\left(\frac{V_{0}}{R}-\frac{Q_{0}}{R C}\right) e^{-t / R C} \\
V_{C}=\frac{Q_{0}}{C} e^{-t / R C}+V_{0}\left(1-e^{-t / R C}\right)=V_{0}+\left(\frac{Q_{0}}{C}-V_{0}\right) e^{-t / R C}
\end{gathered}
$$

Transient Response of an Inductor

What happens when the switch is closed?

- Kirchoff’s law for a single loop:

$$
V_{0}+V_{L}=V_{R}
$$

- The voltage induced by the inductor is $V_{L}=-L d I / d t$,

$$
V_{0}=R I+L \frac{d I}{d t}
$$

- The solution of the differential equation for I and V_{L} :

$$
\begin{gathered}
I=I_{0} e^{-t R / L}+\frac{V_{0}}{R}\left(1-e^{-t R / L}\right) \\
V_{L}=-I_{0} R e^{-t R / L}+V_{0} e^{-t R / L}=\left(V_{0}-I_{0} R\right) e^{-t R / L}
\end{gathered}
$$

RC Time Constant

- $R C$ has units of time ($1 \Omega-\mathrm{F}=1 \mathrm{C} / \mathrm{A}=1 \mathrm{~s}$)
- For a closing switch, $Q_{0}=0$

- For an inductor: L / R has units of time $(1 \mathrm{H} / \Omega=1 \mathrm{~s})$.
- This is the time constant for inductive circuits.

Pulses

- A perfect square pulse has an amplitude V_{0} and duration T like a perfect switch on and off.

- Real pulses have a finite rise time t_{R} and fall time t_{F}.

- A perfect voltage divider reduces the voltage of the amplitude but leaves the time unchanged.

Integrator

- Low-pass filter at short times

- The relationship between charge and voltage

$$
v_{i n}=R \frac{d Q}{d t}+\frac{1}{C} Q
$$

- The solution of the differential equation for Q and $\mathrm{v}_{\text {out }}$ with $\mathrm{Q}_{0}=0$:

$$
\begin{gathered}
Q=v_{\text {in }} C\left(1-e^{-t / R C}\right) \\
v_{\text {out }}=v_{\text {in }}\left(1-e^{-t / R C}\right) \cong \frac{v_{\text {in }}}{R C} \quad t \ll R C
\end{gathered}
$$

- For $\mathrm{v}_{\text {in }}$ slowly varying in time compared to RC

$$
v_{\text {out }} \cong \frac{v_{\text {in }}}{R C} \cong \frac{1}{R C} \int_{0}^{t} v_{\text {in }} d t
$$

- The gain of the integrated signal is proportional to $1 / \mathrm{RC}$

Integrated Pulses

\longrightarrow

- Square pulse

- Integrated square pulse

- The peak of the integrated pulse is proportional to the area of the initial pulse.

Noise Suppression

- Noise pulse

- Integrated noise pulse

- The magnitude of the noise is reduced by $T / 2 R C$.
- The pulse is spread by a time comparable to $R C$.

Differentiator

- High-pass filter at long times

- The relationship between charge, current and voltage

$$
\begin{aligned}
v_{i n} & =R i+\frac{1}{C} Q \\
\frac{d v_{i n}}{d t} & =R \frac{d i}{d t}+\frac{1}{C} i
\end{aligned}
$$

- The solution of the differential equation for i and $v_{\text {out }}$ with $\mathrm{I}_{0}=0$:

$$
\begin{gathered}
i=\frac{d v_{\text {in }}}{d t} C\left(1-e^{-t / R C}\right) \\
v_{\text {out }}=\frac{d v_{\text {in }}}{d t} R C\left(1-e^{-t / R C}\right)=R C \frac{d v_{\text {in }}}{d t} \quad t » R C
\end{gathered}
$$

- The gain of the differentiated signal is proportional to $R C$.

Differentiated Pulses

\qquad

- Square pulse

- Differentiated square pulse

The peak of the differentiated pulse is proportional to the rise (or fall) time.

