Filter Circuits

- A filter is a 4-terminal circuit element - input and output voltage, gain A.

$$
v_{\text {out }}=A v_{\text {in }}
$$

- Input and output may both have one terminal at ground.
- A voltage divider with resistors is a filter.

High Pass Filter

- Impedances act like resistances in circuits and obey Kirchoff's laws.
- If R_{1} is replaced by a capacitor the divider can be calculated with impedances.

- This can be rewritten in terms of the complex gain A :

$$
A=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{j \omega R C}{1+j \omega R C}=\frac{j \omega R C+\omega^{2} R^{2} C^{2}}{1+\omega^{2} R^{2} C^{2}}
$$

- The terms in the denominator are comparable when $\omega_{\mathrm{b}}=1 / R C$, the breakpoint frequency.

Bode Plot

- The magnitude of a complex number is $|A|=|B+j C|=\sqrt{B^{2}+C^{2}}$

The magnitude of the gain is

$$
|A|=\sqrt{\frac{\omega^{2} R^{2} C^{2}+\left(\omega^{2} R^{2} C^{2}\right)^{2}}{\left(1+\omega^{2} R^{2} C^{2}\right)^{2}}}=\sqrt{\frac{\omega^{2} R^{2} C^{2}}{1+\omega^{2} R^{2} C^{2}}}
$$

- For ω much less than $1 / R C, A$ is very small. $|A| \cong \omega R C$
- For ω much greater than $1 / R C, A$ is nearly 1 .
- The high-pass filter has a breakpoint frequency $\omega_{\mathrm{b}}=1 / R C$.
- A Bode plot compares log gain (dB) to log frequency.

Phase Changes

- The phase of the current compared to the voltage can be determined from the complex impedances: the angle in the complex plane is the phase shift

$$
\tan \phi=C / B
$$

- For the high pass filter:

$$
\begin{aligned}
& \frac{\sqrt{B^{2}+C^{2}}}{\phi} \quad j C=\frac{j \omega R C}{1+\omega^{2} R^{2} C^{2}} \\
& B=\frac{\omega^{2} R^{2} C^{2}}{1+\omega^{2} R^{2} C^{2}} \\
& \phi=\operatorname{atan} \frac{\omega R C}{\omega^{2} R^{2} C^{2}}=\operatorname{atan} \frac{1}{\omega R C}
\end{aligned}
$$

- The phase depends on the frequency

At low frequency, $\phi->90$
At $\omega=1 / R C, \phi=45$
At high frequency, ϕ-> 0

Low Pass Filter

- If the capacitor replaces R_{2} in a voltage divider:

- Again this can be rewritten in terms of the complex gain A :

$$
A=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{1+j \omega R C}=\frac{1-j \omega R C}{1+\omega^{2} R^{2} C^{2}} \quad|A|=\sqrt{\frac{1}{1+\omega^{2} R^{2} C^{2}}}
$$

- For ω much less than $1 / R C, A$ is nearly 1 .
- For ω much greater than $1 / R C, A$ is very small.
- This is called a low-pass filter with a break frequency $\omega_{\mathrm{b}}=1 / R C$.
- Low pass Bode plot

Series RLC Circuit

- A voltage divider with one impedance due to an inductor and capacitor in series

$$
v_{\text {out }}=\frac{Z_{L C s e r}}{R+Z_{L C s e r}} v_{\text {in }}
$$

- The series impedance can be calculated and inserted to find the gain:

$$
\begin{gathered}
Z_{L C s e r}=1 / j \omega C+j \omega L=\frac{1-\omega^{2} L C}{j \omega C} \\
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1-\omega^{2} L C}{j \omega R C+1-\omega^{2} L C} \quad\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\sqrt{\frac{\left(1-\omega^{2} L C\right)^{2}}{R^{2}\left(1-\omega^{2} L C\right)^{2}+\omega^{2} L^{2}}}
\end{gathered}
$$

- Graphically

Parallel RLC Circuit

- A voltage divider with one impedance due to an inductor and capacitor in parallel

- The impedance can be calculated and inserted to find the gain:

$$
\begin{gathered}
Z_{L C p a r}=\frac{j \omega L / j \omega C}{1 / j \omega C+j \omega L}=\frac{j \omega L}{1-\omega^{2} L C} \\
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{j \omega L}{R\left(1-\omega^{2} L C\right)+j \omega L} \quad\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\sqrt{\frac{\omega^{2} L^{2}}{R^{2}\left(1-\omega^{2} L C\right)^{2}+\omega^{2} L^{2}}}
\end{gathered}
$$

- Graphically

Phase Changes at Resonance

- The frequency $\omega=1 / \sqrt{L C}$ is the resonant frequency.
- Use $\tan \phi=C / B$
- For the series RLC circuit:

$$
Z_{L C}=1 / j \omega C+j \omega L=\frac{1-\omega^{2} L C}{j \omega C}
$$

- The phase depends on the frequency

At low frequency, ϕ-> -90
At $\omega^{2}=1 / L C, \phi=0$
At high frequency, $\phi->+90$

Quality Factor

- Consider the power gain in a parallel RLC circuit.

$$
\left|\frac{v_{o u t}}{v_{\text {in }}}\right|^{2}=\frac{\omega^{2} L^{2}}{R^{2}\left(1-\omega^{2} L C\right)^{2}+\omega^{2} L^{2}}
$$

- At resonance the gain is 1 .
- The frequency where the power is halved:

$$
\begin{gathered}
\frac{1}{2}=\frac{\omega^{2} L^{2}}{R^{2}\left(1-\omega^{2} L C\right)^{2}+\omega^{2} L^{2}} \\
\frac{1}{2} R^{2}\left(1-\omega^{2} L C\right)^{2}=\frac{1}{2} \omega^{2} L^{2} \\
1-\omega^{2} L C=\frac{\omega L}{R}
\end{gathered}
$$

- This has solutions at roughly:

$$
\omega=\frac{1}{\sqrt{L C}} \pm \frac{R}{2 L}=\omega_{0} \pm \omega_{0} \frac{R}{2 \omega_{0} L}=\omega_{0} \pm \frac{\omega_{0}}{2 Q}
$$

- $Q=L / R$ is the quality factor for the circuit.

