Alternating Current

- AC voltage varies in time, and a pure AC signal is sinusoidal.

$$
v(t)=V_{0} \cos \omega t
$$

- AC current also varies in time with the same frequency but may have a different phase:

$$
i(t)=I_{0} \cos (\omega t+\phi)
$$

- Frequency $\left(f, \mathrm{~Hz}=\operatorname{cycles} / \mathrm{s}=\mathrm{s}^{-1}\right)$, angular frequency $\left(\omega, \mathrm{rad} / \mathrm{s}=\mathrm{s}^{-1}\right)$, and period $(T, \mathrm{~s})$ are related.

$$
\omega=2 \pi f=2 \pi / T
$$

- Phase measures the relative point in time within one period.

$$
\phi=2 \pi t / T
$$

Rms Measurement

- The time average measure of a signal:

$$
\langle F\rangle=\frac{1}{T} \int_{0}^{T} F(t) d t
$$

- Voltage and current: $V_{\mathrm{rms}}, I_{\mathrm{rms}}$

$$
\begin{gathered}
V_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\left\langle V_{0}^{2} \cos ^{2} \omega t\right\rangle}=\frac{V_{0}}{\sqrt{2}} \\
I_{r m s}=\sqrt{\left\langle i^{2}\right\rangle}=\sqrt{\left\langle I_{0}^{2} \cos ^{2}(\omega t+\phi)\right\rangle}=\frac{I_{0}}{\sqrt{2}}
\end{gathered}
$$

- Phase isn't included in rms measurement.
- Commercial 60 Hz AC signals are measured in rms

$$
120 \mathrm{~V}_{\mathrm{AC}}=\mathrm{V}_{0} / 1.414
$$

$$
\mathrm{V}_{0}=170 \mathrm{~V}
$$

AC Power Supply

- Schematic symbol:

- Power: P

$$
P_{r m s}=\langle v i\rangle=\sqrt{\left\langle V_{0}^{2} \cos ^{2} \omega t\right\rangle}=\frac{1}{2} V_{0} I_{0} \cos \phi
$$

- Ohm's law applies for AC signals at each point in time.

- For an AC voltage through a resistor current and voltage have the same phase.
$\phi=0, \cos \phi=1$.
$P=V_{0} I_{0} / 2=V_{\mathrm{rms}} I_{\mathrm{rms}}$.

Complex Numbers

- Represent an angle in the complex plane.

- The imaginary unit is j.

$$
j=\sqrt{-1}
$$

- A series expansion for an exponential in $j \phi$:

$$
\begin{gathered}
e^{j \phi}=\cos \phi+j \sin \phi \\
e^{j \phi}=1+j \phi+\frac{(j \phi)^{2}}{2!}+\frac{(j \phi)^{3}}{3!}+\frac{(j \phi)^{4}}{4!}+\ldots \\
e^{j \phi}=\left(1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\ldots\right)+j\left(\phi-\frac{\phi^{3}}{3!}+\ldots\right)
\end{gathered}
$$

- Trigonometric formulas can be replaced by exponential ones.

$$
\cos \phi=\operatorname{Re}\left(e^{j \phi}\right)
$$

Gain

- Gain is the ratio of voltage (or current) out of a circuit compared to the voltage (or current) in

$$
A=\frac{v_{\text {out }}}{v_{\text {in }}} \quad A=\frac{i_{\text {out }}}{i_{\text {in }}}
$$

- Unit of gain: decibel (dB)
- Decibels are a logarithmic measure,

Voltage and current, $A_{\mathrm{dB}}=20 \log _{10} A$
Power = voltage $*$ current, $A_{\mathrm{dB}}=10 \log _{10} A$

- Useful rules:

A factor of 10 is a 20 dB measure
A factor of 2 is about a 6 dB measure
Negative dB is a reduction in magnitude

- Gain vs. frequency

Use log-log graph: power law relations become straight lines - Bode plot
eg. $A=c \omega^{-2}$ becomes $A_{\mathrm{dB}}=-2 \omega+\log (c)$

Complex Gain

- Includes magnitude of gain and phase shift
- The absolute magnitude (a real) is the magnitude of the gain

$$
|A|=|B+j C|=\sqrt{(B+j C)(B-j C)}=\sqrt{B^{2}+C^{2}}
$$

- The angle in the complex plane is the phase shift

$$
\tan \phi=C / B
$$

- Graphically:

Capacitance

- For an infinite plane with a charge density $\sigma, Q=A \sigma$:

- The electric field and potential are related to the charge, and the voltage

$$
\int_{S} \vec{E} \cdot d \vec{A}=2 E A=\frac{Q}{\varepsilon_{0}} \quad E=\frac{\sigma}{2 \varepsilon_{0}} \quad V=E d=\frac{\sigma d}{2 \varepsilon_{0}}
$$

- For two planes of opposite charge, the field outside is 0 and the field inside is the sum of the two separate fields, $E=\sigma / \varepsilon_{0}$, and the voltage is $\sigma d / \varepsilon_{0}$.

- Capacitance is the charge stored unit of potential, $C=\frac{Q}{V}=\frac{\sigma A}{\sigma d / \varepsilon_{0}}=\frac{\varepsilon_{0} A}{d}$
- Unit of capacitance: farad $(\mathrm{F})=$ coulomb $(\mathrm{C}) / \operatorname{volt}(\mathrm{V})$

Capacitors

\qquad

- Schematic symbol:

- Capacitors are measured in farads (F) and can range from 10^{-12} to 1 F .
- Capacitors come with maximum voltage ratings from 10 to $10^{4} \mathrm{~V}$.
- Some capacitors are polarized, and voltage must be maintained in a particular direction at all times.

- Capacitors are usually marked in either $\mu \mathrm{F}\left(10^{-6}\right)$ or $\mathrm{pF}\left(10^{-12}\right)$, rarely nF .
$\mu \mathrm{F}$ values are usually less than 1
pF values are usually greater than 1
Like resistors the number is often either a direct measure or uses the three digit code.
With three digits, the first two are a number and the last is an exponent for a power of 10 , usually based on pF. (eg. $103=10 * 10^{3}=10,000 \mathrm{pF}=0.01 \mu \mathrm{~F}$)
- Other codes also exist for capacitors (EIA codes).

Capacitor Types

- Ceramic disk capacitors are cheap, cover capacitances from 1 pF up to $1 \mu \mathrm{~F}$, and come in wide range of performance specifications.
- Polyester film (Mylar) capacitors are cheap, cover capacitances from $0.001 \mu \mathrm{~F}$ up to $100 \mu \mathrm{~F}$ and have reasonable accuracy (5-10\%).
- Polypropylene film (PP) capacitors can have 1% accuracy from 100 pF to $100 \mu \mathrm{~F}$.
- Mica capacitors are bulky and expensive, but have very high quality (1 pF to $3,300 \mathrm{pF}$).
- Electrolytic capacitors have very high capacitance ($0.1 \mu \mathrm{~F}$ to 1 F), but poor accuracy (-20% to $+80 \%$) and are polarized.
- Tantalum capacitors have high capacitance in a small package ($0.1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$), with poor accuracy and are polarized and very sensitive to voltage ripples and cannot be used in all circuits.
- Variable capacitors

C refers to maximum capacitance

Capacitors in AC Circuits

- Capacitive impedance

- The relation between current and voltage is:

$$
\begin{gathered}
v=\frac{q}{C} \\
\frac{d v}{d t}=\frac{1}{C} \frac{d q}{d t}=\frac{1}{C} i
\end{gathered}
$$

- Using the AC voltage and current:

$$
\begin{gathered}
\frac{d v}{d t}=j \omega v=\frac{1}{C} i \\
v=\frac{1}{j \omega C} i
\end{gathered}
$$

- This looks like Ohm's law, but with R replaced by $1 / j \omega C$. This is called the impedance Z.

Inductance

- Ampere' law: the magnetic field in a solenoid with N loops in l meters is related to the current.

$$
\Phi=\int_{S} \vec{B} \cdot \overrightarrow{d A}=\frac{\mu N I A}{l}
$$

- Units from magnetism: field -- tesla $(\mathrm{T})=\mathrm{N} / \mathrm{A}-\mathrm{m}$; flux -- weber $=\mathrm{T}-\mathrm{m}^{2}$
- Faraday's law: a change in flux induces a electric potential.

$$
v=-N \frac{d \phi}{d t}=-\left(\frac{\mu N^{2} A}{l}\right) \frac{d i}{d t}=-L \frac{d i}{d t}
$$

The minus sign indicates the potential is opposite the change in the current.

- Inductance L defined for a coil:

$$
L=\frac{N \Phi}{I}=\frac{\mu N^{2} A}{l}
$$

- Unit of inductance: henry $(\mathrm{H})=$ weber / amp (A)

Inductors

- Schematic symbol:

- Inductors are measured in henrys (H) in the range 10^{-6} to 1 H .
- Inductors are usually marked in either $\mu \mathrm{H}\left(10^{-6}\right)$ or $\mathrm{mH}\left(10^{-3}\right)$.

A resistor color code is used on some inductors.

- Inductors are wound wires, the simplest are in a coil around air.
- Inductors can be wound around iron or ferrite to increase the permeability and thus the inductance.
- Variable inductors

L refers to the maximum inductance for a variable inductor

Inductors in AC Circuits

- Inductive impedance

- Kirchhoff's voltage law gives $v+\left(-L \frac{d i}{d t}\right)=0$.
- The relationship between current and voltage is:

$$
\begin{gathered}
v=L \frac{d i}{d t} \\
\int v d t=L i
\end{gathered}
$$

- Using the AC voltage and current:

$$
\begin{aligned}
\int v d t & =\frac{v}{j \omega}=L i \\
v & =j \omega L i
\end{aligned}
$$

- This looks like Ohm's law, but with R replaced by $j \omega L$. This is the impedance Z for an inductor.

