Kirchhoff's Laws

The sum of currents entering a junction is equal to the sum of currents leaving the junction.

2. Kirchhoff Voltage Law

The sum of voltage increases around a closed loop of a circuit is equal to the sum of voltage drops around the loop.

______MM^

• Branch Method

Label a current through each branch of the circuit.

Set up a set of independent equations for the junctions (current law) and loops (voltage law) in the circuit.

Loop Current Method

Label a current around each independent loop of the circuit.

Set up an equation for each current loop (voltage law), counting all the currents in any given element.

• Nodal Method

Like loop current, but an unknown voltage is assigned to each junction. Currents found from Ohm's Law

Branch Example

- Current law: $I_3 = I_1 + I_2$
- Voltage law: $V_1 V_2 = R_1 I_1 R_2 I_2$ and $V_2 = R_2 I_2 + R_3 I_3$
- Solve for I_1 , substituting for I_3 and I_2 :

$$V_{2} = R_{2}I_{2} + R_{3}I_{1} + R_{3}I_{2}$$

$$V_{2} = R_{1}I_{1} + V_{2} - V_{1} + R_{3}I_{1} + (R_{3}/R_{2})(R_{1}I_{1} + V_{2} - V_{1})$$

$$R_{1}R_{2}I_{1} + R_{2}R_{3}I_{1} + R_{1}R_{3}I_{1} = R_{2}V_{1} + R_{3}V_{1} - R_{3}V_{2}$$

$$I_{1} = (R_{2}V_{1} + R_{3}V_{1} - R_{3}V_{2})/(R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3})$$

• Finally,

$$I_1 = 3 \text{ mA}, I_2 = -1 \text{ mA}, I_3 = 2 \text{ mA}.$$

Series Resistors

• Use a one loop application of Kirchhoff's voltage law:

$$V_{1} = R_{1}I_{1} + R_{2}I_{1}$$
$$V_{1} = (R_{1} + R_{2})I_{1} = R_{eq}I_{1}$$
$$R_{eq} = R_{1} + R_{2}$$

• In general, the series resistance is the sum of the individual resistances.

Voltage Divider

• The voltage at the point between R_1 and R_2 is given by:

$$V_{out} = I_1 R_2 = \frac{R_2}{R_1 + R_2} V_1$$

• The *voltage divider* is perhaps the most common circuit combination!

Parallel Resistors

-777-

- Kirchhoff's current law gives: $I_1 = I_2 + I_3$
- There are two loops for Kirchhoff's voltage law: •

$$V_1 = R_1 I_3 \qquad 0 = -R_1 I_3 + R_2 I_2$$

• Eliminate I_3 from the equations, and solve for I_1 :

$$V_{1} = R_{2}I_{2} \qquad I_{1} = (V_{1}/R_{2}) + (V_{1}/R_{1})$$
$$V_{1} = \left[\frac{R_{1}R_{2}}{R_{1} + R_{2}}\right]I_{1} = R_{eq}I_{1}$$

• In general, the inverse of the parallel resistance is the sum of the inverse of the individual resistances.

$$R_{eq} = R_1 R_2 / (R_1 + R_2)$$
 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$

Resistor Networks ww $\neg NNN$ $\neg \wedge \wedge \wedge \wedge$ • Repeat applications of series or parallel rules as needed: $\begin{array}{c} R_{1} \\ R_{3} \\ R_{2} \\ R_{2} \\ R_{4} \end{array}$ $---\sqrt{R_I}$ $R_{34} = R_3 + R_4$ $R_{234} = \frac{R_2 R_{34}}{R_2 + R_{34}} = \frac{R_2 (R_3 + R_4)}{R_2 + R_3 + R_4}$

The equivalent network is $R_{eq} = R_1 + \frac{R_2(R_3 + R_4)}{R_2 + R_3 + R_4}$

V-I Curves

• Ohmic device (resistor):

-MM-

-ww-

• Voltage source (power supply):

• Current source:

• Battery and resistor in series:

ww

Thevenin's Theorem

Any circuit of batteries and resistors can be reduced to one battery and one resistor in series.

- Theorem is based on the linear form of Ohm's law and Kirchoff's laws.
- Any set of circuit equations is reduced to $V(I) = V_{th} IR_{th}$.

• Procedure

- 1. Find the voltage with no external circuit as V_{th} .
- 2. Find the current that would flow through an external short circuit.
- 3. Find the equivalent resistance as $R_{th} = V_{th}/I_{sc}$.

Thevenin Example

-^^^

- From the Kirchoff example $I_3 = 2$ mA. $V_{th} = R_3 I_3 = 10V$
- If the output is short circuited:

 $I_3 = V_1 / R_1 + V_2 / R_2 = 9.5 mA$

• The R_{th} is the same if all batteries are shorted and resistance measured. $R_{th} = V_{th}/I_{sc} = 1.05k\Omega$

Norton's Theorem

• Electrically equivalent to a Thevenin circuit.

$$R_n = R_{th}.$$

$$I_n = I_{sc} = V_{th} / R_{th}.$$

• Procedure

- 1. Find the voltage with no external circuit as V_{th} .
- 2. Find the current that would flow through an external short circuit I_{sc} .
- 3. Find the equivalent resistance as $R_n = V_{th}/I_{sc}$.