Kirchhoff's Laws

1. Kirchhoff Current Law

The sum of currents entering a junction is equal to the sum of currents leaving the junction.

2. Kirchhoff Voltage Law

The sum of voltage increases around a closed loop of a circuit is equal to the sum of voltage drops around the loop.

- Branch Method

Label a current through each branch of the circuit.
Set up a set of independent equations for the junctions (current law) and loops (voltage law) in the circuit.

- Loop Current Method

Label a current around each independent loop of the circuit.
Set up an equation for each current loop (voltage law), counting all the currents in any given element.

- Nodal Method

Like loop current, but an unknown voltage is assigned to each junction. Currents found from Ohm's Law

Branch Example

- Current law: $I_{3}=I_{1}+I_{2}$
- Voltage law: $V_{1}-V_{2}=R_{1} I_{1}-R_{2} I_{2}$ and $V_{2}=R_{2} I_{2}+R_{3} I_{3}$
- Solve for I_{1}, substituting for I_{3} and I_{2} :

$$
\begin{gathered}
V_{2}=R_{2} I_{2}+R_{3} I_{1}+R_{3} I_{2} \\
V_{2}=R_{1} I_{1}+V_{2}-V_{1}+R_{3} I_{1}+\left(R_{3} / R_{2}\right)\left(R_{1} I_{1}+V_{2}-V_{1}\right) \\
R_{1} R_{2} I_{1}+R_{2} R_{3} I_{1}+R_{1} R_{3} I_{1}=R_{2} V_{1}+R_{3} V_{1}-R_{3} V_{2} \\
I_{1}=\left(R_{2} V_{1}+R_{3} V_{1}-R_{3} V_{2}\right) /\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)
\end{gathered}
$$

- Finally,
$I_{1}=3 \mathrm{~mA}, I_{2}=-1 \mathrm{~mA}, I_{3}=2 \mathrm{~mA}$.

Series Resistors

In series the same current flows through all elements

- Use a one loop application of Kirchhoff's voltage law:

$$
\begin{gathered}
V_{1}=R_{1} I_{1}+R_{2} I_{1} \\
V_{1}=\left(R_{1}+R_{2}\right) I_{1}=R_{e q} I_{1} \\
R_{e q}=R_{1}+R_{2}
\end{gathered}
$$

- In general, the series resistance is the sum of the individual resistances.

Voltage Divider

- The voltage at the point between R_{1} and R_{2} is given by:

$$
V_{\text {out }}=I_{1} R_{2}=\frac{R_{2}}{R_{1}+R_{2}} V_{1}
$$

- The voltage divider is perhaps the most common circuit combination!

Parallel Resistors

In parallel the same voltage is present across all elements

- Kirchhoff's current law gives: $I_{1}=I_{2}+I_{3}$
- There are two loops for Kirchhoff's voltage law:

$$
V_{1}=R_{1} I_{3} \quad 0=-R_{1} I_{3}+R_{2} I_{2}
$$

- Eliminate I_{3} from the equations, and solve for I_{1} :

$$
\begin{gathered}
V_{1}=R_{2} I_{2} \quad I_{1}=\left(V_{1} / R_{2}\right)+\left(V_{1} / R_{1}\right) \\
V_{1}=\left[\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right] I_{1}=R_{e q} I_{1}
\end{gathered}
$$

- In general, the inverse of the parallel resistance is the sum of the inverse of the individual resistances.

$$
R_{e q}=R_{1} R_{2} /\left(R_{1}+R_{2}\right) \quad \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Resistor Networks

- Repeat applications of series or parallel rules as needed:

The equivalent network is $R_{e q}=R_{1}+\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}$

V-I Curves

Devices have a characteristic relationship between current and voltage:

- Ohmic device (resistor):

- Voltage source (power supply):

- Current source:

- Battery and resistor in series:

Thevenin's Theorem

Any circuit of batteries and resistors can be reduced to one battery and one resistor in series.

- Theorem is based on the linear form of Ohm's law and Kirchoff's laws.
- Any set of circuit equations is reduced to $V(I)=V_{t h}-I R_{t h}$.

- Procedure

1. Find the voltage with no external circuit as $V_{t h}$.
2. Find the current that would flow through an external short circuit.
3. Find the equivalent resistance as $R_{t h}=V_{t h} / I_{s c}$.

Thevenin Example

- Consider the branch circuit from before, but connect it to an unknown circuit.

$$
\begin{aligned}
V_{1} & =16 \mathrm{~V} \\
V_{2} & =6 \mathrm{~V} \\
R_{1} & =2 \mathrm{k} \Omega \\
R_{2} & =4 \mathrm{k} \Omega \\
R_{3} & =5 \mathrm{k} \Omega
\end{aligned}
$$

- From the Kirchoff example $I_{3}=2 \mathrm{~mA} . V_{t h}=R_{3} I_{3}=10 \mathrm{~V}$
- If the output is short circuited:

- The $R_{t h}$ is the same if all batteries are shorted and resistance measured. $R_{t h}=V_{t h} / I_{s c}=1.05 \mathrm{k} \Omega$

Norton's Theorem

Any circuit of batteries and resistors can be reduced to one current source and one resistor in parallel.

- Electrically equivalent to a Thevenin circuit.

$$
\begin{aligned}
& R_{n}=R_{t h} . \\
& I_{n}=I_{s c}=V_{t h} / R_{t h} .
\end{aligned}
$$

- Procedure

1. Find the voltage with no external circuit as $V_{t h}$.
2. Find the current that would flow through an external short circuit $I_{s c}$.
3. Find the equivalent resistance as $R_{n}=V_{t h} / I_{s c}$.
