Electricity

-////

Electric Charge

- Unit of charge: coulomb (C)
- Charge of an electron: $Q_{\rho} = -1.6 \times 10^{-19} \text{ C}$
- Conservation of charge:

The total charge in a closed system is constant.

Electric Current

- Unit of electric current: ampere or amp(A) = C/s
- A positive current reflects the direction of positive charge motion.
- A positive current can also be due to negative charges moving in the opposite direction.

____► ______₩\/___►

• From conservation of charge: the sum of all currents at a point is zero.

Current is conserved

-~~

Charge and Work

- Unit of work: joule (J) = N m
- Work is independent of the path taken by a charge.
- Conservation of electrical energy:

The work done on an electric charge along a closed path is zero.

Electric Potential

- Unit of electric potential: volt (V) = J/C
- From the conservation of electrical energy: the sum of voltages around a closed loop is zero.

 \sim

Power

- Unit of power: watt (W) = J/s
- In circuits, a watt equals a volt-amp. P = IV

Ground

-777-

-////-

- The starting point depends on the situation.
- Electric potential is defined relative to a starting point.
- A common starting point used in a circuit is called *ground*.
- In a circuit, ground is given a special symbol.

- Circuits may not show ground.
- Voltage can be given or measured between any two points, not just to ground.
- If voltage is given at just one point, then it is assumed to be with respect to ground.

Conductivity

• Current density is the flux of current per unit area: J=I/A

- Conductivity is the relation between current density and the applied electric field: $J = \sigma E$.
- Conductivity can depend on the material, field, temperature, pressure, or other physical properties.
- Assume an electron is has constant acceleration from an electric field for time τ , then it collides with an atom and starts over.
- With constant acceleration, the electron's velocity is $v = \frac{eE\tau}{m}$.
- If the number of electrons in the conductor is *n*, then the current density is $J = nev = \frac{ne^2\tau E}{m}$
- The conductivity depends on the number of electrons and mean time between collisions:

$$\sigma = \frac{ne^2\tau}{m} = ne\mu$$

Where μ is the *mobility*.

Resistivity

- *Resistivity* is the inverse of conductivity: $\rho = 1/\sigma$.
- *Resistance* measures the integrated resistivity per cross-sectional area over a length of conductor:

$$R = \int \frac{\rho}{A} dl$$

- For a uniform material of length L, $R = \rho L/A$.
- Unit of resistance: ohm $(\Omega) = V/A$
- Units of resistivity are Ω -m.
- *Conductance* is the inverse of resistance.
- Unit of conductance: mho or siemen = Ω^{-1}

Resistivity in Copper

$$n = 8.5 \ge 10^{22} \text{ e/cm}^3$$

 $ne = 1.36 \ge 10^4 \text{ C/cm}^3$
 $\rho = 1.7 \ge 10^{-6} \Omega$ -cm, so $\mu = 1/ne\rho = 43 \text{ cm}^2/\text{V-s.}$
A large current density is 100 A/cm²,
so $E = \rho J = 1.7 \ge 10^{-4} \text{ V/cm}$, and $v = J/ne = 7.3 \ge 10^{-3} \text{ cm/s.}$
Solving for $\tau = mv/eE = 2.4 \ge 10^{-14} \text{ s.}$
LABORATORY ELECTRONICS I

Ohm's Law

• In a circuit Ohm's law includes a voltage source and a resistance.

• Ohm's law allows power to be expressed in terms of resistance.

$$P = IV = I^2 R = \frac{V^2}{R}$$

Resistors

- Resistors are measured in ohms (Ω) in the range 0.01 to $10^{12} \Omega$.
- Resistors come with power ratings from 1/8 to 250 W.
- Resistors are made with accuracies from 0.01 to 20%.
- Scientific notation is generally avoided for resistors less than $10^{12} \Omega$.
- Preferred units are 1-999 Ω, 1-999 kΩ, 1-999 MΩ, 1-999 GΩ.
- Wire-wound resistors have high precision (0.01-1%), high power ratings and are often bulky, inductance prevents use at high frequencies (1 kHz).
- Metal-film resistors are precise (0.1-1%) and stable, but capacitance prevents use at high frequencies (1 MHz).
- Carbon-composition resistors are common, cheap and work over a wide range of frequencies, but not particularly precise (5-20%) or stable.

Resistor Values

- Resistor values are coded by
- 1. Size

Power ratings for carbon-composition resistors are standard sizes for 1/8, 1/4, 1/2, 1, 2 W.

2. Number

With three digits, the first two are a number and the last is an exponent for a power of 10.

Example: $103 = 10 * 10^3 = 10 \text{ k}\Omega$.

Standard two digit numbers go in steps of about 10%:

10, *11*, 12, *13*, **15**, *16*, 18, *20*, **22**, *24*, 27, *30*,

33, *36*, *39*, *43*, **47**, *51*, *56*, *62*, **68**, *75*, *82*, *91*

3. Color (instead of number)

0:black, 1:brown, 2:red, 3:orange, 4:yellow, 5:green, 6:blue, 7:violet, 8:grey, 9:white A fourth band is for precision: none=20%, silver=10%, gold=5%.

• Variable resistors and potentiometers

R refers to maximum resistance

Thermal Effects

Temperature Variations

- Thermal motion of atoms changes the drift of electrons between atoms.
- Resistance is dependent on temperature.

_____**/**____

$$R_T = R_0(1 + \alpha \Delta T) = R_0(1 + \alpha T - \alpha T_0)$$

-////-

Temperature is measured with respect to a reference - typically 300 K.

- Elemental metals have values of α from 0.003 to 0.007 K⁻¹.
- Some materials, such as carbon, have a negative dependence.

Resistance Thermometer

- Pure platinum is used as a standard from -190 C to +600 C.
- A precise current and precision voltmeter are used to make a thermometer.

Thermistor

- Made from alloys or metal oxides, sometimes encased in glass.
- Strong negative dependence on temperature

$$R_T = R_0 e^{A(1/T - 1/T_0)}$$

• Wide range of resistances available: 30 Ω to 20 M Ω .

Voltage Sources

Batteries

- Chemical batteries are typically available from 1-15 V.
- Chemical type determines energy density and lifetime available: zinc-carbon, alkaline, mercury, nickel-cadmium, lithium, etc.

+ | | | | -

- High energy density means small batteries.
- Lifetime measures current available for a period of time (Ah).

Power Supplies

- Uses 120 V AC or other power source to create specific voltage.
- AC voltage requires transformer, rectifier, and regulator to create DC.
- Rating includes maximum voltage and current.

Current Sources

• Ideally provides constant current for any load.

Internal Resistance

- Real supplies have some resistance inside.
- Voltage sources behave like there is a series resistance.

• Current sources behave like there is a parallel resistance.

