Electricity

Electric Charge

- Unit of charge: coulomb (C)
- Charge of an electron: $Q_{e}=-1.6 \times 10^{-19} \mathrm{C}$
- Conservation of charge:

The total charge in a closed system is constant.

Electric Current

- Unit of electric current: ampere or $\operatorname{amp}(\mathrm{A})=\mathrm{C} / \mathrm{s}$
- A positive current reflects the direction of positive charge motion.
- A positive current can also be due to negative charges moving in the opposite direction.
- From conservation of charge: the sum of all currents at a point is zero.

Current is conserved

$$
I_{3}=I_{1}+I_{2}
$$

Voltage

Charge and Work

- Unit of work: joule $(J)=N \mathrm{~m}$
- Work is independent of the path taken by a charge.
- Conservation of electrical energy:

The work done on an electric charge along a closed path is zero.

Electric Potential

- Unit of electric potential: volt $(\mathrm{V})=\mathrm{J} / \mathrm{C}$
- From the conservation of electrical energy: the sum of voltages around a closed loop is zero.

Power

- Unit of power: watt $(\mathrm{W})=\mathrm{J} / \mathrm{s}$
- In circuits, a watt equals a volt-amp. $\quad P=I V$

Ground

- Work is defined relative to the starting point on a path.
- The starting point depends on the situation.
- Electric potential is defined relative to a starting point.
- A common starting point used in a circuit is called ground.
- In a circuit, ground is given a special symbol.

- Circuits may not show ground.
- Voltage can be given or measured between any two points, not just to ground.
- If voltage is given at just one point, then it is assumed to be with respect to ground.

Conductivity

- Current density is the flux of current per unit area: $\boldsymbol{J}=\boldsymbol{I} / A$

- Conductivity is the relation between current density and the applied electric field: $\boldsymbol{J}=\sigma \boldsymbol{E}$.
- Conductivity can depend on the material, field, temperature, pressure, or other physical properties.
- Assume an electron is has constant acceleration from an electric field for time τ, then it collides with an atom and starts over.
- With constant acceleration, the electron's velocity is $v=\frac{e E \tau}{m}$.
- If the number of electrons in the conductor is n, then the current density is $J=n e v=\frac{n e^{2} \tau E}{m}$
- The conductivity depends on the number of electrons and mean time between collisions:

$$
\sigma=\frac{n e^{2} \tau}{m}=n e \mu
$$

Where μ is the mobility.

Resistivity

- Resistivity is the inverse of conductivity: $\rho=1 / \sigma$.
- Resistance measures the integrated resistivity per cross-sectional area over a length of conductor:

$$
R=\int \frac{\rho}{A} d l
$$

- For a uniform material of length $L, R=\rho L / A$.
- Unit of resistance: ohm $(\Omega)=V / A$
- Units of resistivity are Ω-m.
- Conductance is the inverse of resistance.
- Unit of conductance: mho or siemen $=\Omega^{-1}$

Resistivity in Copper

$n=8.5 \times 10^{22} \mathrm{e} / \mathrm{cm}^{3}$
$n e=1.36 \times 10^{4} \mathrm{C} / \mathrm{cm}^{3}$
$\rho=1.7 \times 10^{-6} \Omega-\mathrm{cm}, \quad$ so $\mu=1 / n e \rho=43 \mathrm{~cm}^{2} / \mathrm{V}$-s.
A large current density is $100 \mathrm{~A} / \mathrm{cm}^{2}$,
so $E=\rho J=1.7 \times 10^{-4} \mathrm{~V} / \mathrm{cm}$, and $v=J / n e=7.3 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$.
Solving for $\tau=m v / e E=2.4 \times 10^{-14} \mathrm{~s}$.

Ohm's Law

- In a normal uniform conductor, the resistivity is independent of the field or current density.

$$
\begin{gathered}
J \rho=E \\
\left(\frac{I}{A}\right)\left(\frac{R A}{l}\right)=\left(\frac{V}{l}\right) \\
I R=V
\end{gathered}
$$

- In a circuit Ohm's law includes a voltage source and a resistance.

- Ohm's law allows power to be expressed in terms of resistance.

$$
P=I V=I^{2} R=\frac{V^{2}}{R}
$$

Resistors

- Schematic symbol:

- Resistors are measured in ohms (Ω) in the range 0.01 to $10^{12} \Omega$.
- Resistors come with power ratings from $1 / 8$ to 250 W .
- Resistors are made with accuracies from 0.01 to 20%.
- Scientific notation is generally avoided for resistors less than $10^{12} \Omega$.
- Preferred units are 1-999 ת, 1-999 k Ω 1-999 M $\Omega, 1-999 \mathrm{G} \Omega$
- Wire-wound resistors have high precision (0.01-1\%), high power ratings and are often bulky, inductance prevents use at high frequencies (1 kHz).
- Metal-film resistors are precise (0.1-1\%) and stable, but capacitance prevents use at high frequencies (1 MHz).
- Carbon-composition resistors are common, cheap and work over a wide range of frequencies, but not particularly precise (5-20\%) or stable.

Resistor Values

- Resistor values are coded by

1. Size

Power ratings for carbon-composition resistors are standard sizes for $1 / 8,1 / 4,1 / 2,1,2 \mathrm{~W}$.
2. Number

With three digits, the first two are a number and the last is an exponent for a power of 10 .
Example: $103=10 * 10^{3}=10 \mathrm{k} \Omega$.
Standard two digit numbers go in steps of about 10% :
10, $11,12,13,15,16,18,20,22,24,27,30$,
$\mathbf{3 3}, 36,39,43,47,51,56,62,68,75,82,91$
3. Color (instead of number)

0:black, 1:brown, 2:red, 3:orange, 4:yellow, 5:green, 6:blue, 7:violet, 8:grey, 9:white A fourth band is for precision: none $=20 \%$, silver $=10 \%$, gold $=5 \%$.

- Variable resistors and potentiometers

R refers to maximum resistance

Thermal Effects

Temperature Variations

- Thermal motion of atoms changes the drift of electrons between atoms.
- Resistance is dependent on temperature.

$$
R_{T}=R_{0}(1+\alpha \Delta T)=R_{0}\left(1+\alpha T-\alpha T_{0}\right)
$$

Temperature is measured with respect to a reference - typically 300 K .

- Elemental metals have values of α from 0.003 to $0.007 \mathrm{~K}^{-1}$.
- Some materials, such as carbon, have a negative dependence.

Resistance Thermometer

- Pure platinum is used as a standard from -190 C to +600 C .
- A precise current and precision voltmeter are used to make a thermometer.

Thermistor

- Made from alloys or metal oxides, sometimes encased in glass.
- Strong negative dependence on temperature

$$
R_{T}=R_{0} e^{A\left(1 / T-1 / T_{0}\right)}
$$

- Wide range of resistances available: 30Ω to $20 \mathrm{M} \Omega$.

Voltage Sources

\qquad

- Schematic symbol:

- Ideally provides constant voltage for any load.

Batteries

- Chemical batteries are typically available from 1-15 V.
- Chemical type determines energy density and lifetime available: zinc-carbon, alkaline, mercury, nickel-cadmium, lithium, etc.
- High energy density means small batteries.
- Lifetime measures current available for a period of time (Ah).

Power Supplies

- Uses 120 V AC or other power source to create specific voltage.
- AC voltage requires transformer, rectifier, and regulator to create DC.
- Rating includes maximum voltage and current.

Current Sources

- Schematic symbol:

- Ideally provides constant current for any load.

Internal Resistance

- Real supplies have some resistance inside.
- Voltage sources behave like there is a series resistance.

- Current sources behave like there is a parallel resistance.

