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The University of Maryland electron ring is a small low energy machine for the study of space-charge

dominated beams. Differential algebraic methods as implemented in COSY INFINITY offer an accurate

method to study and analyze single particle nonlinear dynamics. As a starting point for space-charge

related studies, we undertook a comprehensive examination of the single particle nonlinear dynamics

based on differential algebra methods. Quantities such as tunes, chromaticities, dispersion, amplitude

dependent tune shifts, and resonance strengths were calculated, and robustness of the solutions with

respect to errors tested. The model demonstrated that the earth’s magnetic field has a significant impact on

the beam, and adds rich dynamics even in the absence of space charge. Initially we determined the tunes

for which an injection-free idealization of the ring had the largest dynamic aperture. Our study then

showed that the actual ring also had the largest dynamic aperture at these same tunes, and at these tunes

was also least sensitive to errors. Comparison of predicted beam trajectories with measured data showed

that the model was accurate for the examined area.
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I. INTRODUCTION

The University of Maryland electron ring (UMER) is an
electron storage ring that is 3.8 meters in diameter, which
uses low energy (10 keV) electrons to study space-charge
dominated beams, and that models some more costly heavy
particle beam accelerators [1–3]. A necessary prerequisite
for understanding space-charge dominated beams, and the
efficient operation of the associated equipment, is the
knowledge not only of the effects of space charge, but
also the single particle nonlinear dynamics. During the
design phase for the facility an analysis was performed
[4], which measured the predicted effects of random errors
in the placement and powering of the magnetic elements,
as well as a preliminary look at how the beam might be
steered in the earth’s magnetic field. There has been steady
progress with the operation of the ring [5–9]; however,
there have been several changes to the design of the facility
since its commissioning, as well as to the ambient mag-
netic fields surrounding it. So it is timely to perform a
comprehensive nonlinear analysis of the current configu-
ration. It is hoped that this will lead not only to a better
understanding of the fundamental dynamics, but also in-
creased operating efficiency.

The low energy of the beam and the small radius of the
ring, combined with the earth’s magnetic field, lead to

nonplanar reference trajectories and intricate relative mo-
tion. Furthermore, the injection method used involves de-
liberate misalignments which are difficult to model and
optimize. Therefore examining the single particle dynam-
ics of the as-built machine is a necessary endeavor.
The ring has 18 sections, see Fig. 1. Seventeen sections

(labeled RC1 through RC17) comprise the main ring, each
with two bending dipoles and two sets of focusing-
defocusing quadrupoles, with a vertical steering dipole at
the entrance. The last section (the Y section) is where the
beam is injected into the ring; this is accomplished by
sending the beam through a large quadrupole and a pulsed
dipole which changes bending direction based on whether
the beam is being injected or is recirculating. There is a
matching section that goes from the electron gun to the Y
section. This section contains a short solenoid with a
unique field profile. Fourteen of these sections have diag-
nostic chambers in them which contain both destructive
phosphor screens and nondestructive beam position moni-
tors. Sections 4, 10, and 16 have glass gaps and section 10
contains the resistive wall current monitor used in this
work [10]. For more details see [11].
The code used for this study was COSY INFINITY 9.0; for

an overview of its capabilities see [12]. This code utilizes
differential algebras (DA) to determine transfer maps to
arbitrary order, and to analyze them by normal form meth-
ods [13]. It works by using DA vectors to calculate deriva-
tives algebraically; this allows for exact computational
differentiation. Since these methods allow for detailed
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maps to be calculated, quantities such as betatron tunes can
be determined directly from the map without the need for
lengthy tracking. In complicated systems the paths of
particles as they move through phase space can trace out
intricate patterns. Normal form methods perform a coor-
dinate transformation such that the pattern left by the path
of the particle after a large number of passes in a turn by
turn surface of section is always a circle. Furthermore,
since the DA methods can be used to find the derivatives
with respect to any variable we wish, the chromaticities can
be directly calculated by making energy a variable. Since
the normal form method is a coordinate transform, indi-
vidual particles can have their tunes directly determined,
allowing for the computation of amplitude dependent tune
shifts. This also allows for a study of the resonances, and
the resonance strengths can be directly computed [13].
COSY also has an architecture which allows new elements

to be easily implemented. This can be used either for
elements with unusual properties such as the UMER short
solenoid, or for adding effects to existing elements such as
kicks from the earth’s magnetic field or image charges.
Furthermore, COSY has the ability to treat arbitrary mis-
alignments exactly.

The main types of studies performed using COSY in-
volved steering of the beam, tune measurements, reso-
nance strength calculation, and amplitude dependent tune
shift calculation. In addition, a range of operating points
which give different horizontal and vertical tunes were

calculated and compared for effectiveness in maintaining
the beam quality.
The outline of the paper is as follows: Section II contains

the theoretical background and various computer studies of
the ring that were performed using COSY INFINITY.
Derivations of the effects of the earth’s magnetic field
and image charges are shown in Appendices A and B.
Section III shows the results of a number of experiments
done in the University of Maryland electron ring, and a
comparison to their predicted values. Finally, in Sec. IV we
conclude with a brief summary.

II. MODELING AND SIMULATIONS

A. Theoretical background

The UMER beam was modeled in COSY in a manner that
involved effects from the earth’s magnetic field as well as
the effects of image charges. The vertical component of the
earth’s field is the strongest, and acts to provide roughly
20% of the bending in the ring. Hence, this effect, negli-
gible in almost all accelerator applications, becomes sig-
nificant for UMER. COSY’s default routines produce
transfer maps for standard machine elements, all of which
entail planar reference orbits. This is not the case when the
earth’s field and image charge effects are included. This
involves altering some of COSY’s procedures. These effects
were added by introducing kicks at regular intervals within
each element. These kicks were enacted using Strang
splitting [14,15]. This method works for any set of differ-
ential equations, and does not necessarily require them to
be Hamiltonian. Since the dominant forces in this effect are
the horizontal and vertical magnetic fields, an Az can al-
ways be derived to account for these fields, and symplec-
ticity is not an issue. While there is a small longitudinal
field COSY has a routine that will symplectify the map [16].
Strang splitting is a way of taking a system where there

are multiple physical effects that can each be separately
described by a differential equation in the coordinates ~z ¼
ð ~q; ~pÞ:

d~z

ds
¼ ~g1ð~z; sÞ ) ~f1ðsÞ; (1)

d~z

ds
¼ ~g2ð~z; sÞ ) ~f2ðsÞ; (2)

where s is the independent variable and ~g1ð~z; sÞ and ~g2ð~z; sÞ
are arbitrary smooth vector functions, and the initial con-
ditions are known. While the method can be adapted for
nonautonomous systems [17–19], for numerical purposes
the system was broken into sections small enough to be
considered autonomous. Assuming known solutions

[ ~f1ðsÞ, ~f2ðsÞ] to the separate equations, Strang splitting
shows that a good approximation of the solution is

FIG. 1. A simplified diagram of the ring made using COSY

INFINITY’s graphics package. The sections labeled RC1, 2,

etc. have diagnostic chambers containing phosphor screens and
beam position monitors. RC4, 10, and 16 do not have beam
position monitors to make room for other diagnostics.
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d~z

ds
¼ ~g1ð ~zÞ þ ~g2ð~zÞ ) ~f2

�
s

2

�
� ~f2ðsÞ � ~f1

�
s

2

�
þOðs3Þ;

(3)

which gets increasingly accurate with decreasing s.
In order to change as little as possible the existing COSY

elements, we apply Strang splitting with the following
identifications:

~f 1ðsÞ � MðsÞ; (4)

~f 2ðsÞ � KðsÞ; (5)

whereK is a kick (due to the earth’s field or image charge)
andM is the COSY generated map for the element, and s is
(a fraction of) the length of the element. The strengths for
the kicks are derived from magnetic field data, and the
geometry of the ring in Appendices A and B.

COSY INFINITY can calculate a number of quantities

using normal form methods. Normal forms are just a
coordinate transformation from the particle optical coor-

dinates ~z ¼ ð ~q; ~pÞ to action angle coordinates ~j. This is

done with a transformationA, such that ~j ¼ Að~zÞ. When
these action angle coordinates undergo a transformation

N they move in circles with radius j ~jj. The normal form
N is related to the original map M by the relation N ¼
A �M �A�1. This transformation generates a map of
the form

N ¼
N 1 0

N 2

0 N 3

0
@

1
A; (6)

where

N m ¼ cos½�mð ~jÞ� sin½�mð ~jÞ�
� sin½�mð ~jÞ� cos½�mð ~jÞ�

 !
: (7)

This makes � of the form �ð ~jÞ ¼ �0 þ aj1 þ bj2 þ
cj1j2 þ dj21 þ � � � , where �0 is the tune and a; b; c; d; . . .
are the amplitude dependent tune shifts. If energy is de-
clared a parameter �, i.e. �0 ! �0ð�Þ, then there will be an
expansion �1�þ �2�

2 þ � � � , where �1 is the chromatic-
ity. The normalizing map A gives the resonance driving
terms, and can be used to obtain the matching conditions
[13].

B. Simulation studies

Since high fidelity simulations are desired, the default
COSY elements were used as much as possible. However,

changes were required to simulate novel elements and
effects. The quadrupoles were implemented using a hard
edge model that was developed previously [20,21]. While a
detailed examination of the fringe fields was performed
before the machine was built [22,23], this particular study
restricts itself to the integrated hard edged model, since this
lends itself well to the addition of the earth’s magnetic field

and measured fringe field data was unavailable. One of the
complicating issues in UMER is its method of injection
and recirculation. The design sends the beam through the
first quadrupole deliberately off-center, so it acts both as a
focusing element and as a bending element; see Fig. 2.
COSY’s ability to directly implement offsets to the beam

line was beneficial in modeling this behavior, but since the
beam is deliberately off-center, the matching and steering
of the beam become interlinked processes.
Another difficulty stems from assumptions COSY makes

regarding the nature of the reference orbit. COSY assumes
that all reference trajectories are planar, while the earth’s
field can alter the trajectory into all three dimensions.
Because of this nonplanar nature, adding the earth’s field
to the simulation can be done with kicks; see Sec. II A. The
magnetic field and image charge kicks are applied in the
different elements at different rates; the quadrupoles have
15 kicks per element, while dipoles and drifts have six
kicks per element. The number of kicks was determined by
increasing the number of kicks until the output converged
to the precision of the measured earth’s field (approxi-
mately 10�4 Gauss). The image charge kicks are included
within the Y section due to the significant offset in that
region. The same number of kicks per element was enough
for convergence. The values for the components of the
earth’s field at the location of the kicks were determined
by interpolating values measured at each dipole. The paths
of the injected and recirculated reference orbits around the
Y section are shown in Fig. 2.
The beam was modeled with a uniform spatial distribu-

tion and a Maxwellian velocity distribution, starting at the
cathode with the spatial domain determined by the size of
the cathode, and the velocity distribution determined by the
temperature. After the beam was modeled in COSY

INFINITY, a series of simulations were run. The simulations

were performed in such a way that they took more and
more effects into account from the various ordered terms.
First we studied the 0th order effects, steering through the
matching section and ring. Then 1st order effects were
taken into account: the injection section was matched,
betatron tunes were calculated, as was the chromaticity,
the momentum compaction, and the dispersion. Finally,
nonlinear effects were taken into account, including am-

FIG. 2. (Color) A diagram of one particular operating point
steering the beam through both injection (green) and recircula-
tion (red) sections.
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plitude dependent tune shifts, higher order chromaticities,
and resonance strengths. However, it should be noted that
while we talk about 0th and 1st order effects, the higher
order effects on the motion of the beam will effect the final
values of the computed terms, since the reference orbit is
off-centered.

1. Constant term effects

In order for the beam to be used for long term studies,
accurate steering both at injection and during recirculation
is necessary. Steering through the injection line is accom-
plished using steering dipoles, while steering throughout
the ring is accomplished by varying the current through the
bending dipoles. Determining a closed orbit that stays
close to the centerline of the machine is important, and
the earth’s magnetic field makes this task much more
difficult. The initial round of simulations involved steering
through each two-dipole section by assuming that the beam
would enter the section at the center of the beam pipe with
zero lateral velocity, and the dipoles were changed such
that the beam would exit the section at the center of the
beam pipe also with zero lateral velocity. Also, the beam
would enter and leave each section moving straight
through the section without any angle with respect to the
centerline of the beam pipe. The results shown in Fig. 2. are
the product of extensive optimizations using COSY’s built
in optimization algorithms.

Previous steering solutions [24] for the ring had used the
earth’s magnetic field data to try to reduce the dipole
currents by an amount equal to the equivalent of the
integrated earth’s field, which gave similar predictions as
can be seen in Fig. 3. From an operations standpoint, the
relative smoothness or jaggedness of the current settings

are inconsequential. Attempts that were made to smooth
(global, polynomial, running averages, etc.) deteriorated
the steering of the beam. The ring steering as calculated
with COSY assumed that the beam centroid would enter the
first turn at the center of the pipe with zero angle, and a
fitting algorithm was used to have it exit the turn at the
center of the pipe with zero angle. Therefore the steering
algorithm was designed such that the beam centroid would
leave the electron gun aperture and enter the ring under
those conditions. This involves both the steering dipoles
and the matching quadrupoles working together to bring
the beam into the ring. For recirculation the simulations
used a combination of the bending dipole on the recircu-
lation side of the ring, the recirculation steering dipole, and
the pulsed dipole. All elements are at fixed locations. The
purpose of this optimization was to make all perturbations
as local as possible. An example of the closed orbit for one
particular operating point is shown in Fig. 4. In this figure it
can be seen that with a good set of dipole corrections the
deviation of the closed orbit from the center can be kept in
the horizontal plane to the submillimeter scale. The num-
ber of vertical steering degrees of freedom made optimi-
zation of the vertical trajectory more challenging. One
method that increased the speed at which a solution was
found, was to add the position and angle terms to the
objective function in quadrature. In the vertical direction
the displacement is a few millimeters.

2. Linear effects

Next, the linear behavior of UMER was examined, to try
to determine the best operating point. The matching set-
tings for the injection line were determined using a set of
5000 particles arranged for a given aperture that were sent

FIG. 3. (Color) A comparison of values for the ring steering. In order to account for the earth’s magnetic field, the ring bending dipoles
must be altered from their physical bending setting of 10 degrees. This is a plot of that change. The black line is the previous method of
reducing the dipole currents by the amount equal to the equivalent of the integrated magnetic field over the section. The blue line is the
result of having COSY INFINITY steer the beam to the center of the pipe with zero angle at the end of each focusing-defocusing (FODO)
section. We attempted to smooth out the settings but every attempt made the steering significantly worse.
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through the solenoid, then matched to the ring’s Twiss
parameters as generated by COSY, and the steering dipoles
were then fitted to move the beam through the injection
line to the center of the beam pipe with zero angle. The two
quadrupoles in the injection section keep the same values
that were determined for the ring matching, but the pulsed
dipole can be varied to steer the beam towards its closed
orbit. The matching algorithm uses the linear elements of
the map, and takes linear coupling into account. This was
performed with COSY’s internal optimization algorithms.

The next set of simulations used the large quadrupoles in
the Y section to control the betatron tune. The tune that
would result if instead of an injection section with 17 ring
sections the ring was made of 18 identical sections (i.e. the
optimal value for the fully symmetric layout) is called the
ideal tune. We use the magnetic field, quadrupole and
dipole settings of the other 17 sections combined with a
similar set for the 18th section. The ideal tunes were
calculated to be ð�1; �2Þ ¼ ð6:764 57; 6:637 17Þ. The dif-
ferences in the quadrupole strengths greatly affect the
steering of the beam since the beam enters them off-center.
Therefore the tune matters not only as the operating point,
but also as part of the steering. We see that the x tune can be
varied more according to this study than the y tune. A total
of 81 values for the betatron tune, centered around the ideal
tune, were investigated to determine how much beam
remained within the beam pipe, a measure of the dynamic
aperture, after a set number of turns. These values cover a
square of tunespace with a magnitude of 0.08 per side. This
method of measuring the dynamic aperture involved creat-
ing a set of initial conditions at the location of the electron
gun’s aperture, and following the particles through the
beam line as they go through injection and into the ring

for a set number of turns, the number of initial conditions
that remain in the beam pipe (2.95 cm radius) are used to
determine the dynamic aperture. The initial conditions had
a uniform distribution in space, using the cathode radius of
4 mm and were Gaussian in angle distribution, using a
temperature of 1100�C. In the study shown in Fig. 5 that
number could be as much as 100% of the particles, or as
low as 0%. Large differences are seen in the survival rates
of the different tunes. The best operating point seems to be
in the vicinity of the ideal tune. Figure 5 also has the low
order resonance lines shown in it; it should be noted that
this contour plot is created by interpolating a grid of 81
operating points. This means that, even if a low order

FIG. 5. (Color) A contour plot of the scanned tune space. Darker
areas denote less of the beam surviving after 100 turns. The
green e symbol represents the location of the ideal tunes.
Superimposed are the resonance lines up to sixth order, red
indicates 2nd order, orange indicates third order, green indicates
fourth order, light blue indicates fifth order, and dark blue
indicates sixth order.

FIG. 4. A plot of the closed orbits for one operating point both
horizontally and vertically.

FIG. 6. A plot of the progression of the dispersion as the one
term map is generated FODO section by FODO section.
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resonance seems to show a small effect, that does not mean
that it is weak, only that there was no operating point
calculated on that resonance.
Another quantity that needs to be understood is the

maximum dispersion of the various operating points.
Since the dipole settings within the ring remain the same
for all of the operating points, it is the steering settings
through the Y section that contribute to the differences. It is
also informative to investigate the manner in which the
dispersion changes as the map is generated element by
element; this behavior is shown in Fig. 6. Furthermore, if
the beam is measured at various places around the beam
the levels of dispersion will differ; the behavior of the one-
turn dispersion element is plotted as a function of distance
around the ring in Fig. 7. There is a distinct repetitive
pattern to the dispersions of the various maps as we

FIG. 7. (Color) A plot showing the dispersion of the 81 operat-
ing points used in this study, all are superimposed to show the
variability in the dispersion of the one-turn map as calculated
around different points of the ring. The colors denote the
positions of the contour plots shown in Fig. 8 in order.

FIG. 8. Four contour plots of the dispersion across the scanned tune space. Darker areas denote lower levels of dispersion. The values
are contoured between �0:02 m and 0.08 m. The locations for the upper left, upper right, lower left, and lower right are marked with
the light blue, red, dark blue, and green points in Fig. 7, respectively. The green e symbol represents the location of the ideal tunes.
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move around the ring, with the range of values going
through periods being small, and then quite large. A com-
parison of the manner in which this range of values is
distributed with respect to tune space is shown in Fig. 8.
These four plots show that the morphology of the distribu-
tion in tune space is not a function of the range of variables,
since the two on the left side share similar morphologies,
while have very different ranges of values.

It is also possible to measure the momentum compaction
of the operating points; the comparison is shown in Fig. 9.
The momentum compaction values range from�0:0006 to
0.0005 and can be seen to be connected to both the x and y
tunes.

3. Nonlinear effects

Using the DA normal form methods that are an integral
part of COSY, it is very simple to calculate the chromatic-
ities. The chromaticities are shown in Table I. These com-
pare the calculated values for four operating points that
were the default settings used for four currents during
March of 2009. The labels are historical in nature, as the
beam current in the simulation only affects the image
charge force, which has a very small effect. The reason
these settings are different is that they must be matched in a
different manner which affects the steering through injec-
tion and ultimately the betatron tune. The addition of the
higher order terms can help further distinguish operating
points; if we compare the chromaticities for the pencil
beam and the 7 mA beam, the pencil is only larger by
57% whereas the next term is not only 4 times larger in

magnitude, but also opposite in sign. The beams were
distinguished by peak current, with the pencil beam being
the lowest at 0.6 mA. In the simulations the chromaticities
depend heavily on the quadrupoles in the Y-injection sec-
tion, as that was the major change for the repetitive por-
tions of the ring.
The strengths of the various resonances can also be

calculated. In Fig. 10 the resonance strengths for four
operating points are shown; the 7 mA operating point has
smaller resonance strengths than the others. The four op-
erating points in Fig. 10 have different steering and magnet
settings which lead to different resonances being dominant.
However, the (1, 2), (1, 0), and (2, 1) resonances are
prominent in each operating point, which is most likely
the resonances excited by the 17 ring sections since these
are not changed as significantly as the injection line and the
Y section between the operating points. Note the absence
of large high order resonances in any of the operating
points. It is interesting to note that operationally the
7 mA beam seems to be the most well-behaved beam.
Using the normal form methods available in COSY, it is

possible to calculate amplitude dependent tune shifts; these
lead to footprints of the kind seen in Fig. 11. Other oper-
ating points have different patterns, and some do not dis-
play this behavior altogether. Within the tune scan that was
performed as part of this analysis, it was the operating
points with higher y tunes that showed the fewest examples
of amplitude dependent tune shifts, and when they were
calculated for default UMER settings the ones detected
were very small.
Another issue that would be of concern when selecting

an operating point is the effect of errors on the beam. This
study used the 81 operating points that had been deter-
mined previously. Both the effects of placement errors of
the elements and of the strengths of the magnets were
simulated. These effects were calculated using the design

FIG. 9. A contour plot of the momentum compaction across
the scanned tune space. Darker areas denote a smaller compac-
tion factor. The range of values is between �0:0006 to 0.0005.
The green e symbol represents the location of the ideal tunes.

TABLE I. Betatron tune predictions for four operating points.
The first column contains the order of the term: 0th order is the
tune itself, 1st is d�

d� , 2nd is ðd2�Þ=ðd�2Þ etc. The second column

is the value predicted by COSY. The four operating points are
labeled above the terms.

Pencil beam 7 mA beam

Order �ð�Þ Order �ð�Þ
0 0.747 0 0.63722

1 �7:1058 1 �4:4947
2 111.479 2 �25:83
3 �4787:3359 3 �969:6789

23 mA beam 80 mA beam

Order �ð�Þ Order �ð�Þ
0 0.6796 0 0.6900

1 �6:172 1 �5:0174
2 �11:2667 2 �31:2928
3 2034.3401 3 �1221:4241
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FIG. 11. (Color) The left side shows a well-behaved tune footprint, while the right side shows a more diffuse tune footprint. The
differences are caused by different quadrupole settings. The lines are the resonance lines up to order six, with the same color scheme as
Fig. 5.

FIG. 10. (Color) A plot of up to sixth order resonance strengths for the four current values examined. Strengths are based on a 50 �m
emittance and all vertical axes are to the same scale. Colors are for visual differentiation only.
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tolerances for the ring, by creating 100 sets of combined
offsets in the ring, in essence there were 100 slightly
different rings. These offsets were based on the design
tolerances as set for the beam during the design phase
[4]. The placement offsets for horizontal and vertical had
a standard deviation of 0.1 mm, the displacement along the
centerline had a standard deviation of 1.0 mm, and the
rotation of the elements around the axis of the beam pipe
had a standard deviation of 4.0 mrad. The static magnet
current errors had a standard deviation of 0.5%. The same
set of initial conditions was sent through each of these
rings, and the standard deviation for the x direction was
calculated for each set of initial conditions. After averaging
for each operating point, the results for the placement
offsets are shown in Fig. 12 and for the magnetic field in
Fig. 13. As is readily visible, the areas that are least
susceptible to magnet current errors are also least suscep-
tible to placement errors; these indicate operating points
which are more robust within the range of errors antici-
pated when the machine was built.

The hard edged model used here includes integrated
effects of the fringe field. An attempt was made to use
the default fringe field routines that come with COSY;
however, this led to a number of issues since the routines
are designed for much larger elements that are spaced
further apart. In the UMER case there is overlapping of
the fringe fields of different elements. While a theoretical
treatment was made before UMER was built [22,23],
measured fringe field data was unavailable. Since experi-

mental data was unavailable and interesting nonlinear dy-
namics were found without fringe fields, the analysis here
involves only the hard edged approximation.
This initial set of simulations shows the great impor-

tance of including the earth’s field in these calculations.
The earth’s field continuously deflects the beam out of its
centered orbit requiring intricate steering solutions, which
can only imperfectly keep the beam centered. This will
then affect the way that the beam is focused since it is no
longer necessarily entering the quadrupoles symmetrically.
In effect the earth’s field makes UMER a drift-free storage
ring. An examination of the dynamic aperture for a model
of UMER that does not use the earth’s field shows 100%
transmission of the beam across all 81 operating points, as
compared to Fig. 5.
Figures 5, 12, and 13 imply that the region around the

ideal tune will be the best to use: it has the largest dynamic
aperture and the highest resilience with respect to errors.
Finally, these simulations show that, even if the ideal tune
cannot be obtained, in a small region of tune space sur-
rounding the ideal tune, the machine will still work with
minimal beam loss, even with the complicating factors of
the earth’s magnetic field, image charges, and design
offsets.

III. EXPERIMENTAND COMPARISON

We performed a series of experiments on the ring in an
effort to benchmark the simulations. The first experiment
was to compare the results of the steering solution provided

FIG. 12. A contour plot of the average standard deviation for
100 different sets of placement offsets. The darker areas show a
smaller standard deviation of offset, which means they are less
sensitive to errors. The green e symbol represents the location
of the ideal tunes.

FIG. 13. A contour plot of the average standard deviation for
100 different sets of magnet current offsets. The darker areas
show a smaller standard deviation of offset, which means they
are less sensitive to errors. The green e symbol represents the
location of the ideal tunes.
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by COSY and the previous magnetic field compensation
values, as described in Sec. II B. The results of simulating
both steering settings as well as their measured values are
shown in Fig. 14. We see fairly good agreement between
the predicted and measured values as they progress around
the ring. The relative movement between the previous
values and the COSY derived values in both the measured
and predicted cases is similar. Technical difficulties pre-
vented accurate tracking through the 11th beam position
monitor. Therefore most tracking studies were only per-
formed up through RC9. These technical issues prevented a
full examination of the tracking predictions, but the data
that was taken can be used as a tool to diagnose misalign-
ments [25]. Since the steering solution is off-center in most
of the ring elements, all nonlinear effects are present due to
feed-down. Hence, a good agreement between measured
and predicted steering solutions is indicative of an accurate
modeling of the full nonlinear dynamics.

The COSY predicted settings compared with the UMER
calculated settings, as well as another set of UMER set-
tings based on a LOCO-type response matrix steering
algorithm [9], were used to provide a common basis for
comparison of the steering solutions; see Fig. 15. The

original steering solution in COSY assumed that the beam
would be injected straight along the centerline, which is
not necessarily the case, so a new steering solution was
devised based on the UMER stock matching settings. As
can be seen in Fig. 16, there was significant improvement.

IV. SUMMARYAND CONCLUSIONS

This study undertook an analysis of the single particle
nonlinear effects in the University of Maryland electron
ring, both through simulation and follow-up experiments.
The abilities of the software package COSY INFINITY allow
for a multitude of fast, accurate simulations. The
University of Maryland electron ring has a number of
unique qualities including effects from the earth’s mag-
netic field, which were modeled throughout the ring using
measured data. In simulations, we studied beam steering,
matching, betatron tunes, chromaticities, resonance
strengths, momentum compaction, and dispersion. The
results of these studies show that UMER has rich nonlinear
dynamics even in the absence of space charge. We showed
that steering in the nontrivial geometry of the injection and
recirculation section can be done accurately. We also
showed that the closed orbit distortions could be mini-
mized to less than 1 mm horizontally and �5 mm verti-
cally. We identified some of the best operating points
where the beam survival is maximized over many turns.
In summary, the simulations and analyses of the simu-

lations showed that a wide variety of behavior could be
observed simply by varying the currents to the two large
quadrupoles within the injection line. Some settings were
clearly superior to others, showing both better beam sur-
vival, better resilience to placement offsets, and greater
robustness with respect to magnet current offsets.
Furthermore, COSY’s ability to calculate quantities such
as relative resonance strengths might be able to explain
why operating points act differently under many turns,
including why the 7 mA beam seems to be the most stable
of the possible beams being used.
Some simulation analyses were implemented and were

analyzed on the actual machine. Benchmarking involved
observing the beam trajectory as it moved through the
various beam position monitors. When compared with

FIG. 16. (Color) The blue line is the predicted value for the new
steering settings, while the black line is the measured trajectory.

FIG. 15. (Color) Steering solution using the default values for
the UMER ring; a comparison of measured (black) to predicted
values (blue).

FIG. 14. (Color) A comparison of the predicted and measured
ring steering trajectories. The black line is the previous magnetic
field compensation value, while the light blue line is the one
calculated in this study. The dark blue line is the predicted
trajectory for the previous compensation value, while the red
line is the predicted trajectory for the settings determined in this
study.
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simulated data, the beam agrees well with measurements
made in the ring through the first half of the machine. It is
noteworthy that, not only do the trajectories within the first
half of the ring match closely, it is actually possible to use
the COSY model to improve the steering of the ring in a
nontrivial manner. A more complete benchmarking, using
the full ring, is in progress.

Of course, the primary purpose of UMER is to study
space-charge dominated beams, so our comprehensive
nonlinear model of the ring will serve as an excellent
starting point for space-charge related simulations. An
analysis of the interplay between the single particle non-
linear dynamics and the effects of space charge will be
very interesting. Furthermore, the relative importance of
intensity-dependent effects are the subject of ongoing
studies.
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APPENDIX A: EARTH’S MAGNETIC FIELD KICK

This is the derivation for the kick strength used to model
the earth’s magnetic field. In the notation of Sec. II A, ~g1
and its corresponding solution M is already known and
implemented in COSY for all magnetic elements repre-
sented in the UMER ring. The function ~g2 and its corre-
sponding solution K is due to the earth’s magnetic field.
The standard, canonical COSY coordinates are used, ~z ¼
ðx; a; y; bÞ, where a ¼ px=p0 and b ¼ py=p0, the coordi-

nates x and y are the horizontal and vertical positions, ~p ¼
ðpx; py; psÞ is the momentum of the particle, and p0 is the

momentum of the reference particle. These coordinates are
chosen to be implemented using Strang splitting, since
these are the coordinates that COSY uses to express the
transfer maps. For the earth’s field inside each element,
we assume constant values equal to the value at the center

of the element, ~B ¼ ðBx; By; BzÞ ¼ constant. The relevant

differential equations for the kick are [13]

x0 ¼ 0; (A1)

a0 ¼
�
b

Bz

�m0

� By

�m0

�
ð1þ hxÞ; (A2)

y0 ¼ 0; (A3)

b0 ¼
�
Bx

�m0

� a
Bz

�m0

�
ð1þ hxÞ; (A4)

where h ¼ 1
r , r being the radius of curvature, and�m0 is the

magnetic rigidity of the reference particle. Assuming ini-
tial conditions ðxi; ai; yi; biÞ, the solution is

xðsÞ ¼ xi; (A5)

aðsÞ ¼
�
bi �

By

Bz

�
sin

�
Bz

�m0

ð1þ hxiÞs
�

þ
�
ai � Bx

Bz

�
cos

�
Bz

�m0

ð1þ hxiÞs
�
þ Bx

Bz

; (A6)

yðsÞ ¼ yi; (A7)

bðsÞ ¼
�
Bx

Bz

� ai

�
sin

�
Bz

�m0

ð1þ hxiÞs
�

þ
�
bi �

By

Bz

�
cos

�
Bz

�m0

ð1þ hxiÞs
�
þ By

Bz

: (A8)

For sections that do not bend h ¼ 0. Finally, the kickK
is given by (A5)–(A8) evaluated at s ¼ ‘.

APPENDIX B: IMAGE CHARGE KICK

In order to properly account for the effects of image
forces on the beam, it becomes important to determine the
magnitude of the force in order to apply a kick. We assume
a perfectly conducting straight cylindrical beam pipe, and a
beam which has cylindrical symmetry, with a constant
longitudinal charge density that is long enough for end
effects to be neglected; see Fig. 17. This is a good approxi-
mation for UMER. Using a cylindrical coordinate system
the differential equation is of the form

€�� q�

2��0m

�

R2 � �2
¼ 0; (B1)

where � is the offset from the center of the beam pipe, R is
the radius of said beam pipe, q is the charge of an electron,
� < 0 is the charge density along the beam pulse, m is the
mass of the electron, and �0 is the electric permittivity. This
models the forces on the centroid of the beam.
Since the differential equation is of the form �00 þ

G0ð�Þ ¼ 0, it has the conservation law,

FIG. 17. Diagram of the coordinate system in use for deriving
the effects of image charge on the motion of the beam.
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1
2�

02 þGð�Þ ¼ E: (B2)

We assume �0 ¼ 0 at � ¼ 0, since the image charge in a
cylinder only affects off-center beams. This leads to

�0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q�

2��0m
ln

�
R2 � �2

R2

�s
; (B3)

where � is the magnitude of the displacement and equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Using a, b to represent the angles while assum-

ing that the particles are nonrelativistic, we get their kick
strength equal to

�a ¼ x

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q�

2��0m
ln

�
R2 � ðx2 þ y2Þ

R2

�s
; (B4)

�b ¼ y

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q�

2��0m
ln

�
R2 � ðx2 þ y2Þ

R2

�s
: (B5)

Now we derive the equation of motion for an individual
(test) electron in the beam so that the image force can be
applied to an arbitrary set of initial conditions. So we
define the variable � as the line between the particle in
question and the image charge; see Fig. 18. Once again we
get that

€�� q�

2��0m

1

�
¼ 0: (B6)

This is solved in a similar manner to the centroid prob-
lem:

_� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cþ q�

��0m
lnð�Þ

s
: (B7)

Now we define the coordinates of the image charge and
the particle. The position of the image charge is based on
the location of the beam centroid with coordinates ðxc; ycÞ,
and the location of the test electron will be ðxe; yeÞ. This
leads to

�x ¼ R2xc
�2

� xe; (B8)

�y ¼ R2yc
�2

� ye; (B9)

where in the notation just introduced � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ y2c

p
. This

entails

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x þ�2
y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2

�

�
2 � 2

R2

�

�
xexc þ yeyc

�

�
þ x2e þ y2e

s
: (B10)

Inserting this into (B7) we obtain

_� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ q�

��0m
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2

�

�
2 � 2

R2

�

�
xexc þ yeyc

�

�
þ x2e þ y2e

s �vuut
: (B11)

To determine the value ofCwe require that if the test electron coincides with the centroid of the beam, xe ¼ xc, ye ¼ yc,

then _� ¼ _�. The solution forC is reinserted in the equation, where we apply the unit vectors to get the direction of the kick,
and we scale it to the particle optical coordinates a and b. Finally, we obtain

xðsÞ ¼ xi; (B12)

aðsÞ ¼ ai þ
R2

� xc � �xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2R2ðxixc þ yiycÞ þ ðx2i þ y2i Þ�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�

2��0m
ln

�
R6 � 2R4ðxixc þ yiycÞ þ ðx2i þ y2i ÞR2�2

ðR2 � �2Þ3
�s
1

v0

; (B13)

yðsÞ ¼ yi; (B14)

FIG. 18. Diagram of the coordinate system in use for deriving
the effects of image charge on a test electron in the beam.
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bðsÞ ¼ bi þ
R2

� yc � �yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2R2ðxixc þ yiycÞ þ ðx2i þ y2i Þ�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�

2��0m
ln

�
R6 � 2R4ðxixc þ yiycÞ þ ðx2i þ y2i ÞR2�2

ðR2 � �2Þ3
�s
1

v0

: (B15)

The kick K is given by evaluating at s ¼ ‘.
From a programming perspective, it is possible when

fitting, for � to become greater than R. For this reason the
software was written so that if � was greater than R, the
procedure would return a zero kick, and the objective
function for the kick would be increased by a set amount.
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Española de Mathemática Aplicada (2008), pp. 89–145.
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