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I. What is Beam Physics

The field of Beam Physics deals with mo-
tion of ensembles of particles (usually charged)
in electromagnetic fields. In the case of Beam
Physics, all particles have similar coordinates.
In many cases, the positions and momenta of
the particles are sufficient to describe their mo-
tion. In this case, the particles are described by a
state vector consisting of positions and momenta

�Z = (x, px, y, py, z, pz) . (1)

In other cases, additional coordinates may be
needed; typical examples include themass, some-
times the charge, or the spin vector of the par-
ticle. An ensemble of particles with such simi-
lar coordinates is called a beam, and the sub-
fields concerned with the study of such beams is
called Beam Physics. There are other subfields
of Physics dealing with the study of the motion of
such ensembles of particles; important examples
are Plasma Physics and the Dynamics of Galax-
ies. These fields are different from Beam Physics
in that in their case, the particles usually don’t
have rather similar coordinates, but occupy larger
regions.

Cloud of
particles

Px

x

Z0

A Beam, an Ensemble of Particles

The space of state vectors �Z is often called
phase space, and a coordinate system showing �Z
is often called a phase space diagramdiagram..
The volume of the cloud in phase space of par-
ticles has a special name, it is called emittance.

As we shall see later, in many systems the emit-
tance is conserved and hence plays a special role.

Because all particles are close together, it is
often useful to pick one of these particles, typi-
cally one that is somewhere “in the middle”, and
describe the motion relative to this so-called ref-
erence particle. So if the reference particle
has coordinate �Z0,then the motion of the parti-
cles would be described in the relative coordinates
∆�Z = �Z − �Z0.

In many cases, the density of particles is so
low that their interaction can be neglected or
expressed by simple collective models.

If the fields are electromagnetic, then the mo-
tion is described by the Lorentz Force Law
(Gaussian units)

d�p

dt
= q

µ
�E +

1

c
�v × �B

¶
(2)

Here �E and �B are the electric and magnetic
fields, respectively. These fields are connected to
the scalar potential V and the vector potential �A
via the relations

�B = �∇× �A ; �E = −1
c

∂ �A

∂t
− �∇V (3)

Although this may not be directly relevant now
and only important later, we want to note here
for the sake of completeness that the equations of
motion in the form of the Lorentz force law can
also be obtained from the Lagrangian

L = −mc2
r
1− v2

c2
+

q

c
�v · �A− qV (4)

From this Lagrangian, one can also obtain a
Hamiltonian of the motion in a procedure that is
standard for all Lagrangian systems.. One begins
by defining the so-called canonical momentum:

�pcan =
∂L

∂�v
(5)
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which here has the form �pcan = γm�v+ q
c
�A = �pdyn+

q
c
�A; it is different from the relativistic dynamical
momentum pdyn = γm�v. The Hamiltonian of the
motion can then be found as

−→
H = �pcan · �v − L

. This expression initially contains both �p and �v,
and it is necessary to eliminate �v and express it
in terms of �p. We find

�v = c ·
�pcan − q

c
�Ar³

�pcan − q
c
�A
´2
+m2c2

(6)

and then obtain for the Hamiltonian

H =

r³
c�pcan − q �A

´2
+m2c4 + qV (7)

When studying the fate of the beam from the
time it is made until it is used, there are usually
four steps involved. First, there must be a way for
the production of the beam, and for the sake of
efficiency if possible in such a way that its emit-
tance is small. Next, in most cases the energy of
the beam has to be increased; there has to be a
mechanism of acceleration. Because of the out-
standing importance of this process, the whole
field is often called Accelerator Physics. Then
it is necessary to transport the beam to where
it is being used; and finally, there is often a need
for storage of the beam for use at a later time
or re-use. Lastly, often there is a need for analy-
sis of the beam, in particular after the beam has
been used for its purpose, which frequently is the
facilitation of certain nuclear or high energy reac-
tions.

II. Production of Beams

The mechanisms used for the production of
the beam depend very much on the particular
kind of beam that is needed, and they include
atomic, nuclear, or high energy processes. In

these notes, we want to be rather brief about the
detailed processes and refer to the much more ex-
tensive lecture on ion sources.

A. Electron Sources

Electrons exist in abundance in metals, and
to form them into beams requires their extraction
from the metal. There are two main processes
with which this can be achieved.

1. Heated Metal and Potential

The first method of extraction is based on
heating of metal; by doing so, a small fraction
of the electrons will achieve energies high enough
to overcome the potential step that is necessary
to leave the metal. Once outside the metal, they
can be pulled away further by the application of
strong fields. The basic principle is shown in the
left part of the picture.

Heating Coil

Metal

x

a

Electron Source

This method of acceleration usually leads to
high currents. But because the area where the
particles leave the metal is large, and they do
so with a variety of different momenta, the emit-
tances are usually rather large, as shown schemat-
ically on the right part of the above picture.

2. Field Emission

In the case of field emission, a sharp needle
is brought into external electric fields. Because
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Figure 1: Electron Source

the needle is a conductor, it acts as an equipoten-
tial surface, and induces very strong electric fields
near its tip. By choice of the right geometry, the
fields can be made high enough to pull electrons
out of the tip directly. All these electrons emerge
approximately at one point, and usually their mo-
menta are rather small; hence the emittance tends
to be small.

B. Ion Sources

There are a large variety of different ion
sources in existence, and they will be covered in
detail in Richard Pardo’s lecture. Two important
basic mechanisms for the production of ion beams
are as follows.

1. Bombarding Gas Atoms with Electrons

In this method which is useful for the ex-
traction of beams from gases, a high-current elec-
tron source is used to send a stream of electrons
through a gas. Due to collisions, ions are formed,
which can then be extracted via some applied
electric fields.
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In order to not extract the electrons at the
same time, magnetic fields are applied which re-
strict the movement of the relatively light elec-
trons. Such ion sources can have quite high cur-
rents, but because the region of the space in which
ions are produced is large and the ions can also
have many different momenta, the emittance is
often high.

2. Bombarding Surfaces Atoms with Pro-
jectiles

For non-gaseous atoms, one can often just hit
a surface containing the atoms of interest with a
beam of more easily produced particles. Due to
the impact, often individual ions leave the surface,
which can then be extracted with suitable electric
fields.

Material

Incident
beamExtracted ions from the material

Ion Source

Typically these sources have rather low cur-
rent output.
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3. Other Mechanisms

Depending on the kind of particles being de-
sired, there are a large variety of other mech-
anisms to produce them. Important kinds of
sources include positron sources (SLAC, LEP),
antiproton sources (Fermilab), pions (LAMPF,
Los Alamos), kaons, radioactive nuclei (MSU),
etc.

III. Acceleration of Beams

We now assume that an ensemble of parti-
cles occupying a ”small” volume of phase space
has been created, and we thus have a ”beam”. In
many if not most of the practical cases, the en-
ergy which the beam has after being produced by
the source is not sufficient for the purpose it is to
be used for, which frequently amounts to furnish-
ing the energy necessary for atomic, nuclear, or
particle processes of interest.

In most cases, the motion is best studied
by first considering the motion of the reference
particle, and once this motion is understood sat-
isfactorily, to study the relative motion of the
other particles. For a simple analysis of the rela-
tive motion, often a linear approximation with all
the resulting simplifications is possible, but fre-
quently a full understanding of the motion can
only be achieved by considering the nonlinear ef-
fects.

Considering the special shape of the Lorentz
force law, since �v× �B is perpendicular to the veloc-
ity �v, it is apparent that magnetic fields cannot be
used for purposes of acceleration, which requires
forces in the direction of the particle. Thus any
acceleration has to be provided by electric
fields. However, as we shall see, also magnetic
fields have very good use in particle accelerators,
as they can be employed to guide the beam to
where it is needed. In particular, in the process of
acceleration they are often used to guide the beam
through the same region of electric field repeat-

edly and thus allow to maximize the use of the
electric fields. Indeed, for this purpose of guiding
the beam magnetic fields are usually even better
suited than electric fields, since for the high ve-
locities that beams usually have after even mod-
est acceleration, the forces that can be attained
with technologically available magnetic fields far
exceed those that can be achieved with the re-
spective electric fields.

Very generally, the amount of energy K a
particle gains while travelling from time t1 to time
t2 in an electric field �E(�r, t) that depends on po-
sition and time is given by the path integral

K = q ·
Z t2

t1

�E(�r(t), t) · �v(t) dt, (8)

where �r(t) is the particle’s position as a function
of time and �v(t) its velocity. In the special case
that �E is time independent and hence can be
written in terms of a potential via �E = −�∇V,
this path integral reduces in a natural way to the
difference in potential as

K = q · (V (�r1)− V (�r2)) (9)

This simple fact implies a very important con-
sequence for the design of electric accelerating
fields: if there is to be any chance to utilize the
same electric field repeatedly for the purpose of
acceleration, then the electric field has to be time
dependent, because otherwise repeated passing
just results in a periodic increase and decrease of
energy. In fact, the attempt to build an acceler-
ator trying to create energy repeatedly by flying
through the same time independent field is tanta-
mount to the attempt to build a perpetual motion
machine.

A. The Van de Graaff

The van de Graaff accelerator and several
similar devices derived from it are the main rep-
resentatives of the class of accelerators utilizing
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time independent fields. The voltage difference
that the particles travel through is obtained with
a van de Graaff generator, which consists of
an endless non-conducting belt onto which charge
is sprayed from a tip via field emission and then
transported to the inside of a hollow metal sphere
where it is deposited. Since any charges on a con-
ducting object accumulate on the outside and cre-
ate a field-free interior, new charge can be brought
in from the belt on the inside of the sphere with-
out experiencing any opposing fields, and thus
large amount of charges can be accumulated on
the sphere, resulting in a very high potentials.

In passing it is worth to remark that while
the newly added charge does not experience a
field when moving from the belt to the inside of
the sphere, it certainly experiences a field while
being approaching the sphere and being attached
to the belt. Thus the potential energy contained
on the charged sphere does not come for free, it
is generated through the mechanical work that
is necessary to move the belt and the attached
charges towards the sphere.

+
+

+ +
+

+

very high voltage

discharging electrode

charging electrode

+

huge tank

inside

source

beam pipe

target
(Experimental hall)

The Van de Graff Accelerator

The charged sphere is connected to a metal
enclosing containing the ion source, thus elevat-
ing the source to a potential, which can then be
utilized for the acceleration of the particles.

The main practical limitation of the van de
Graaff Accelerator is the necessity to prevent
sparks. This is achieved on the one hand by
sheer size, because at the same potential differ-
ence, larger size means less electric field strength.

On the other hand, it is important to inhibit
the spark formation process. Microscopically,
sparks form in a gas when small numbers of
charged particles have a mean free path length
that is long enough so they can attain energies
sufficient to ionize other particles upon collision,
resulting in an avalanche.. This can be avoided
by choosing inert gases like He or SF6, and on the
other hand applying high pressure to reduce the
mean free path length.

The van de Graaff accelerator has several de-
sirable features, for example it can produce a fully
continuous beam at high beam current. Its main
limitation are the relatively low energies that it
can produce, which seldom exceed about 20 MeV.

B. The Tandem Van de Graaff

- +

Ground Source Thin foil Target Ground

The Tandem Van de Graff Accelerator

The Tandem van de Graaff is an efficient
modification of the van de Graaff concept, in
which both the source and the target are kept
at ground potential and which can efficiently in-
crease the energy that can be obtained. For
this purpose, a source is chosen that produces
negatively charged ions, which are sent through
a regular van de Graaff. At the end of the accel-
erating section, the ions are sent through a thin
foil, in which many of them are stripped of some
of their electrons, resulting in positive ions. Be-
cause the particles already have substantial en-
ergy when hitting the foil, often much higher
charge states can be produced than in the ion
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source itself. These positive ions are sent through
a second stage van de Graaff, which is essentially
a reversion of the first stage, and by the time the
target is reached, depending on their charge state
after stripping, their energy is increased twofold
or more. Having very similar characteristics to
the original van de Graaff, the energies that can
be achieved in this way are in the range of up to
60 MeV.

C. The Linac (Linear Accelerator)

It is an important observation that the field
strength that can be obtained in quickly oscil-
lating (rf, or radiofrequency) electric fields can
be substantially higher than those that can be
made statically in devices of similar size. This
is partly due to reduced presence of spark for-
mation, because the formation of an avalanche
of charged particles requires time scales that are
usually larger than the time the field is in one
phase.

The use of an oscillating field, however, im-
mediately entails that only half of the cycle can be
used for acceleration, and thus different from sta-
tic accelerators, the resulting beams always have
a temporal microstructure. In practical use,
usually several rf resonators are used sequentially,
each one of which accelerating the particles, and it
is very important that the phase relationship be-
tween the individual accelerating sections is cor-
rect. This is usually achieved by applying the
fields between the edges of adjacent conducting
tubes. The lengths of the tubes are chosen in
such a way that the time the particles require to
fly through them equals one half of the rf period,
so that the particles never ”see” an electric field
of the wrong sign.

1 2 3

Metal (pipe) tube

rf

The Linac

So the length Li of the ith tube has to be
chosen so that it satisfies

Li ≈
1

2
viTrf (10)

where Trf is the period of the rf frequency. Ap-
parently this leads to a system of tubes of increas-
ing length, i.e. L1 < L2 < L3 < . . . The exact
lengths Li of course depend on the relationship
between the kinds of particles and the values of
the accelerating voltages, and so often these de-
signs are rather customized geometries. The geo-
metric situation is much more straightforward for
particles that already enter at speeds close to the
speed of light, which allows the use of a purely
repetitive geometry.

In order to maintain acceleration of all parti-
cles, it is important that the particles are injected
into the linac with the right phase information;
in particular, no particles should enter during the
time the field points in the opposite direction. So
the incoming beam has to consist of a uniformly
arranged sequence of bunches. These bunches
can be produced from a continuous beam of par-
ticles, which is what most ion sources deliver,
by means of a buncher. This is merely an rf
structure which accelerates the particles of a con-
tinuous beam different depending on the time at
which the particles enter, as shown schematically
in the picture. Because of the resulting different
velocity profile, after a certain time the fast parti-
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cles will eventually tend to catch up with the slow
ones, resulting in packets of particles.

immediately
before

immediately
after

RF voltage
accelerating

RF voltage
decelerating

a while 
later

Bunch

Schematic of a Buncher

An interesting combination of the need for
bunching, accelerating, and focusing (which is
discussed later in much greater detail) is the so-
called Radio Frequency Quadrupole, orRFQ, ac-
celerator.

In general, Linacs can provide beams of high
current, and of higher energies than static accel-
erators, yet because of the single use of each elec-
tric field, they are still rather expensive per MeV.
Linacs are frequently used as pre-accelerators
for accelerators of higher energies. They also have
the distinctive advantage that they avoid syn-
chrotron radiation, which is often a limiting
factor in circular accelerators for light particles
such as electrons and positrons. This aspect is
very important at SLAC and the Stanford Linear
Collider, and is the main reason for the interest
in a ”Next Linear Collider”, a pair of two Linacs
shooting electrons and positrons at each other at
high energy.

D. The Betatron

The betatron is arguably the simplest circu-
lar accelerator, and besides its practical use as a
compact accelerator for lower energies, it is also
a beautiful textbook-style application of princi-
ples of electrodynamics. In the case of the be-
tatron, the orbit follows a circular shape, which
is achieved by a magnetic field. If the motion is
perpendicular to the magnetic field, then we have

(SI units)

mv2

ρ
= qvB, and so ρ =

mv

qB
=

p

qB
, (11)

and so the radius of motion depends only on the
momentum and charge of the particle as well as
the magnetic filed. Note that the equation is cor-
rect even in the relativistic case, if m is under-
stood to mean the relativistic mass m = γ · m0.
Commonly the ratio of momentum and charge p/q
is denoted by χm and called magnetic rigidity;
we apparently have

Bρ =
p

q
= χm. (12)

Because χm = Bρ, the magnetic rigidity has the
unit Tesla meter, and is frequently simply referred
to as ”B rho”.

In the case of the betatron, both bending
and acceleration come from the same source,
namely a magnetic field whose strength in-
creases with time in such a way that its mag-
nitude matches the increasing energy of the par-
ticles to keep them at nearly constant radius,
and the circular induced electric field provides
the acceleration for the particles.
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The Betatron

In passing it is worthwhile to note that the
basic idea of utilizing an electric field produced by
a changing magnetic field also occurs in a much
less mundane application from daily life: certain
modern cooking surfaces. In this case, the elec-
trons that are ”accelerated” are not within the
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vacuum of a beam pipe, but merely in the metal
that constitutes the bottom of the pot used for
cooking; and of course since their mean free path
is short, they don’t attain high energies before
colliding with either other electrons or the lattice
atoms, thus transferring their whole kinetic en-
ergy to heat.

A quantitative understanding begins with
Faraday’s law of induction, now one of the
Maxwell equations:

�∇× �E = −d
�B

dt
⇒ (13)Z

A

�∇× �Eds = − d

dt

Z
A

�Bds =⇒ (14)I
�Edl = − d

dt
Φ

where Φ =
R
A
�Bds is the flux of the magnetic field

through the surface. Here we restrict our inter-
est to circular orbits with a radius called r, and
the surface is the inside of the circle. Building
the magnet rotationally symmetric entails a rota-
tional symmetry of the fields, which simplifies the
situation to

E = − 1

2πr

d

dt
Φ = − 1

2πr
πr2

d

dt
B̄ =

r

2
· d
dt
B̄ (15)

where B is the average magnetic field enclosed by
the orbit. Thus we obtain for the momentum

d

dt
(mv) = −qE = qr

2
· d
dt
B̄ ⇒ mv =

1

2
qrB (16)

On the other hand, it must be true that the cen-
trifugal force on the orbit with radius r is compen-
sated by the Lorentz force there, which requires

mv2

r
= qvB (r)⇒ mv = qrB (r) (17)

Thus altogether we obtain the following relation-
ship between the field B(r) at the orbit r and the
average field:

B (r) =
1

2
B; (18)

in order to achieve this, requires a magnetic field
that is stronger in the center than where the
particles move, which can be achieved by suitably
shaping the poles of the magnet.

In principle the temporal behavior of B is
irrelevant; in practice, one usually tries to ”ram-
p” it quickly, because the pulsed beam is only
available at the end of ramping. This is usually
achieved by making the magnet part of an LC
circuit, which also conveniently allows to recover
the energy stored in the magnetic field for the
next ramping. For the practical use, it is impor-
tant to try to limit Eddy currents in the iron, and
in order to maintain the condition B (r) = B/2,
it is important to control saturation effects that
may occur at any ”edges” of the magnet.

The practical use of betatrons is nowadays
mostly for electrons, where energies of about 300
MeV have been achieved; for protons, the values
are about 50 MeV.

E. The Microtron

Also in the microtron, a magnet is used to
bend the particles to let them pass through the
same source of electric field repeatedly. Different
from the betatron, the emphasis here lies on the
production of a continuous beam. Since this
requires that the whole acceleration process must
be independent of the specific time of injection,
this entails that that themagnetic field is con-
stant in time. Thus an external voltage source
is needed; as discussed above, if it is to be used
repeatedly, it has to be time-dependent source,
and in practice it is chosen to be an rf cavity. Al-
together, the motion follows a sequence of tan-
gential circles of increasing radius that touch at
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the location of the rf, as shown in the picture.

1

2

3

4

Extraction

RF

The Microtron

In order to synchronize the particle’s mo-
tion and the momentary direction of the magnetic
field, the revolution frequency of the rf has to be
a multiple of the particle’s revolution frequency,
which can be obtained simply from

γm0v
2

r
= qvB ⇒ ω =

v

r
=

q

γm0
B. (19)

This means the motion has to be either such that
γ = 1, which corresponds to nonrelativistic mo-
tion and hence severely limits the energy. The
other possibility is to provide just enough accel-
eration in each turn that the revolution frequency
decreases to the next multiple of the rf frequency.
So the revolution frequencies would follow the
pattern

ω = ω0,
ω0
2
,
ω0
3
,
ω0
4
,
ω0
5
. . . (20)

This entails that the factor γ follows the sequence
γ = γ0, 2γ0, 3γ0, 4γ0, . . . , which requires ∆γ = 1

per turn. Since E = mc2 = γm0c
2, this means

∆E = m0c
2, and thus the necessary energy gain

per turn must equal the rest mass energy of the
particle under consideration! For electrons, this
means ∆E = 511 keV and is thus possible, for
protons and ∆E = 938 MeV this is not easily
possible within the the confines of a conventional
magnet.

A very important further development of
the concept of a microtron is based on the fact
that if the orbits of the particles are far enough
separated so that one can apply different mag-
netic fields for each orbit and can even change
the shape of the orbit away from circular, then
by careful choice of the orbit lengths, it is possible
to maintain the synchronicity condition 20 while
maintaining the freedom to have any amount of
acceleration that is convenient. This is the ba-
sic idea behind the Continuous Electron Beam
Accelerating Facility CEBAF at Thomas Jeffer-
son National Laboratory, which will be covered in
great detail in a future lecture.

F. The Cyclotron

The basic idea of the cyclotron is similar to
that of the microtron, except that the rf is used
more efficiently by providing acceleration twice or
even more times per turn, and the orbits roughly
follow concentric circles.
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The Cyclotron

According to eq. (19), the revolution fre-
quency is

ω =
1

γ
· q

m0
B (21)

and the momentary radius of the orbit s

r =
p

qB
(22)

This entails very similar restrictions regarding rel-
ativistic effects as in the case of the microtron;
as before, any deviation from constancy of the
magnetic field prevents continuous injection of
beam and hence leads to a non-continuous out-
going beam. But because the orbits are nearly
concentric, it is possible to at least partly com-
pensate the relativistic effects by increasing B
radially in such a way that the frequency in eq.
(22) stays constant. If it is necessary to acceler-
ate different particles in the same machine, then
that entails that the actual field profile has to be
adjustable, which is usually achieved by having
one or several trim coils. The superconducting
K1200 cyclotron located at NSCL on the MSU
campus allows for such corrections of the profile of

the magnetic field, and is currently the cyclotron
achieving the highest energy.

If continuity of the beam is not of prime im-
portance, it is possible to make the necessary rel-
ativistic corrections due to eq. (22) via a de-
crease of the rf frequency during the acceleration
process, which is done in the case of the synchro-
cyclotron. This decrease obviously has to hap-
pen very quickly over the few hundred turns the
particles stay within the accelerating structure,
and thus the pulse frequency can still be rather
high.

G. The Synchrotron

For any accelerator, the ultimate energy
limitation comes from the strength of the mag-
netic field that is available via the unavoidable
restriction

Bρ = χm =
p

q
(23)

But the range of available magnetic fields is rather
limited; typical numbers are in the range of 1-2 T,
the superconducting dipoles at SSC were planned
to have 6.6 T, and the superconducting dipoles at
LHC are planned to operate reliably at 8T. The
highest magnetic fields that can be achieved are
currently in the order of 30 T (Florida State Uni-
versity), but at a rather inconsistent field quality
and usually not over extended times. So the only
way to achieve high energies is to increase the de-
flection radius ρ.

This represents a significant practical lim-
itation to continuous beam accelerators, in
which B must be time independent and the size
of the orbits increases in the acceleration process,
since any region in which the beam may come
has to be covered by magnetic fields. So for re-
ally high energies, the only realistic option is
to have the particles follow the same orbit all
the time by ramping the magnetic field during
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acceleration, and thus limit the region that has to
be covered by magnetic field.

Of course this ongoing adjustment of the
magnetic field during the acceleration process ac-
cording to eq. (23) to maintain constancy of ρ
prevents continous injection and hence continuous
beams. Furthermore, since electric field strengths
are comparatively limited, the fields of the cav-
ities have to be re-utilized many thousands of
times, resulting in a rather stretched-out acceler-
ation process, and thus a rather low repetition
rate of beam pulses.

All these thoughts lead to the concept of
the synchrotron, in which the magnetic field
strength is synchronized with the current energy
or momentum of the particle so as to maintain a
constant orbit. The figure shows a very schematic
view of a synchrotron, consisting of a long nearly
circular beam pipe, many bending magnets, and
rf cavities. As we will see later, in the synchrotron
it is particularly important to take proper care of
the details of the relative motion, the most im-
portant aspect of which is the use of special ”fo-
cusing” devices.
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Injection
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The Synchrotron

The table below shows a small number of
hadron synchrotrons, their approximate dimen-

sions, and the maximum energies for which they
are designed.

IUCF ρ ≈ 10m
Tevatron ρ ≈ 1km E ≈ 1Tev
SSC ρ ≈ 15km E ≈ 20Tev
LHC ρ ≈ 5km E ≈ 8Tev

H. The Storage Ring

The storage ring is not really an accelerator,
it is a device to store the beam that is produced
once so that it can be re-used; essentially it is
a synchrotron with rf turned off. In many
cases, particles orbit for minutes or days. In the
case of the SSC, the desired time was about 8
hours, resulting in

n =
3 · 108m/ sec ·28800 sec

8 · 104m ≈ 108turns (24)

Even more so than in the case of the synchrotron,
one of the main design problems and physically
perhaps the greatest challenge is to try to as-
sure that particles actually stay contained over
this large number of turns. Becaue the motion
is nonlinear, this immediately leads to questions
of nonlinear dynamics with all their interesting
aspects.

One of the main applications of storage rings
is in the collider, where counterrotating beams
are brought to collision at various points around
the ring. At very high energies, colliders have a
significant energy advantage over fixed-target
machines because a very large fraction of the
beams’ energies can be converted to reaction en-
ergy. As a detailed study of the relativistic dy-
namics shows, this is not at all the case for
fixed target machines; in fact, conservation of
energy and momentum severely limits the en-
ergy that can be set free. Important colliders
are the Tevatron (p, p), the now defunct SSC as
well as the LHC (p, p), HERA (p, e−),and LEP
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(e+, e−).Besides the energy advantage, storage
rings also limit the disadvantage of the slow ramp-
ing times typical for synchrotrons in that once the
beam is stored, it is essentially continuous again.

But also for situation that require the beam
to hit a fixed target, storage rings often offer an
advantage over the use of synchrotrons by them-
selves, because it is often possible to extract the
beam much more slowly than in the case of the
synchrotron, resulting in a more easily managable
duty cycle and reducing the problem of over-
flowing the electronics in the detectors. In this
method of ultraslow extraction, the nonlinear
dynamics of the device is adjusted very carefully
and gently in such a way that over time a larger
and larger part of the originally stored emittance
becomes unstable. If it is possible to control the
location around the ring where the spilling occurs,
then the spilled particles can be direct towards the
fixed target as needed. One storage where this
approach is utilized is COSY at KFA in Jülich,
Germany, which will be discussed in detail in a
later lecture.

I. Summary and Comparison of
Various Accelerators

After having discussed the various types of
accelerators, it is useful to summarize their char-
acteristic features side by side. The main physical
criteria of performance are the energy that can
be achieved, the (average) current, as well as the
repetition frequency. For practical considerations,
the size expressed in terms of a characteristic ra-
dius as well as the magnetic field in Tesla are also
important. See table at the end of document.

IV. Linear Beam Theory

In the discussion of the basic physical princi-
ples of the above accelerators, we have casually
neglected the fact that it is necessary to take

care of more than one particle. In fact, all the
above accelerators have to be able to simultane-
ously deal with an ensemble of particles with sim-
ilar phase space coordinates, which is what the
sources deliver, and hence with a beam. As out-
lined above, a detailed understanding of the mo-
tion of the beam requires the study of the motion
of the reference particle as well as the motion
of the relative coordinates.

In the case of accelerators, our demands
on the relative motion are mostly that they beam
does not become unreasonably large, and hence
that the motion is somehow bounded within a
suitable volume of phase space. While this ap-
pears to be a modest wish, for long single pass
accelerators, and more so for repetitive systems,
this problem actually turns out to be nontrivial.
For other types of systems, more specific require-
ments have to be made for the beam; for exam-
ple, to maximize the number of interactions at
an interaction region of a collider, it is impor-
tant to ”squeeze” together the spatial coordinates
of the beam, which under conservation of phase
space volume then requires to make the momen-
tum coordinates large. Devices like particle spec-
trographs or electron microscopes have different
and usually more requirements yet.

In all of these cases, it is important to study
the relative motion carefully; as a first step, the
motion is linearized, and for higher precision, the
nonlinear effects of the motion have to be stud-
ied. Because the volume in phase space occupied
by a beam is small, these nonlinear effects are
often treated in a (later more precisely defined)
perturbative way, in which the first order cor-
responds to linear motion, and nonlinear motion
appears as higher order. Altogether, we have the
following table:

0th order motion of ref. particle
1st order linear motion
2nd+ orders nonlinear motion

12



A. Coordinates and Maps

Usually when studying dynamics, the time t
plays the role of the independent variable, and we
study the motion of positions �x and velocities �v
or momenta �p as coordinates. Using the Lagrange
mechanism, it is easy to transfer to new coordi-
nates, in particular the coordinates that describe
the relative motion around the reference orbit.
Furthermore, instead of using t , we usually use
the arc length s along the reference orbit as in-
dependent variable.

For the understanding of the motion in rel-
ative coordinates, let us assume we have studied
and understood the motion of the reference or-
bit. In the case there is no field at all, this ref-
erence orbit will merely follow a straight line.
Furthermore, there are a host of devices used in
accelerators that have fields, but along one given
straight line, all the fields vanish, and the device
is lined up in such a way that the reference par-
ticle follows this line. Another important device
uses magnetic fields, and along the reference or-
bit one tries to hold them constant, in which case
the reference orbit is circular, at least within the
element. In all other cases, it is usually necessary
to numerically integrate the reference orbit.

reference orbit

s

The Reference Orbit

Assuming the position and momenta of the
reference particle are �rref(s), �pref(s) are known.
As a technical detail, let us also assume that for
all points s, we have �pref(s) ∦ �ez, i.e. the motion

is never pointing straight up (which for most real
accelerators is no limitation whatsoever). Let fur-
thermore ρt be smaller than the minimum radius
of curvature that the reference orbit experiences
in the section of the machine that we want to
study. We now consider a ”flexible tube” of ra-
dius ρt centered around the reference orbit, and
restrict the particles that we want to describe to
only those within the tube. Again, for practical
devices this represents hardly a limitation; in the
SSC, for example, the ”tube” would be more than
20 km wide, much larger (hopefully) than the re-
gion required by the beam particles.

s

r

The Tube of Relative Coordinates

For any particle within the tube, there is now
a closest point on the reference orbit; because
only particles within the tube are allowed, this
point is indeed unique. Let s be the arc length at
this point, and �rref(s) the position of the reference
particle on the reference orbit. Then the relative
coordinates of the point �r are obviously �r−�rref(s).

Let now �es be a unit vector in the direction
of �pref . Consider now the plane perpendicular to
�es. Of all the unit vectors in this plane, let �ey
be the one with the largest ”upward” component;
because �pref and hence �es are not allowed to go
straight up, this vector is well defined. Finally
choose a third vector �ex as �ex = �ey × �es. Be-
cause �ey has maximum ”upward” component, �ex
has vanishing upward component and hence lies
in the horizontal plane.
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Denote now by x the component of �r−�rref(s)
in the direction of �ex, and by y the component of
�r−�rref(s) in the direction of �ey. Similarly, define
px and py to be the momentum components in the
directions �ex and �ey.

Furthermore, denote by δ the relative differ-
ence between the total (kinetic plus potential) en-
ergy E of the particle under consideration and the
reference energy E0, i.e. δ = (E − E0)/E0. Fi-
nally, introduce a space-like variable l to be the
time of flight t minus the time of flight t0 of the
reference particle, multiplied by a constant k of
dimension ”velocity”, i.e. l = k (t− t0) . Then we
form the vector �Z of particle optical coordi-
nates as

�Z =

⎛⎜⎜⎜⎜⎜⎜⎝
x
y

l = k (t− t0)
a = px/p0
b = py/p0

δ = (E −E0) /E0

⎞⎟⎟⎟⎟⎟⎟⎠ (25)

where p0 is some previously chosen scaling mo-
mentum; a natural choice may be to select the mo-
mentum of the reference particle at the beginning.

Note that due to the definition of �Z, the ref-
erence particle itself corresponds to �Z = 0, and
hence the vector �Z does indeed describe the rela-
tive motion. In a seemingly simple way, most of
the problems of beam physics now revolve around
the question as to how �Z evolves as a function of
s.

The entire action of a beam physics device
can now be expressed by how it manipulates the
coordinates in the vector �Z. In fact, usually a set
of initial conditions �Z0 at position s0 uniquely de-
termines the future evolution and hence �Z at any
later position s. While a common notion, mathe-
matically this determinism of classical mechan-
ics rests on some subtle assumptions about the
details of the fields that are allowed in the motion;
but this course is not the place to be concerned

about such issues. Assuming that indeed �Z0 at s0
uniquely determines the future evolution, we can
define a function relating the initial conditions at
s0 to the conditions at s via

�Z (s) =M (s0, s)
³
�Z (s)

´
(26)

The function M (s0, s) , which formally summa-
rizes the entire action of the system, is of great im-
portance for the description and analysis of beam
physics systems. It is often called the transfer
function, the transfer map, or simply themap
of the system. Note that the transfer functions
satisfy the relationship

M (s1, s2) ◦M (s0, s1) =M (s0, s2) , (27)

which merely says that transfer maps of systems
can be built up from the transfer maps of the
pieces.

SinceM describes the motion in relative co-
ordinates, we always have

M(�0) = �0. (28)

Furthermore, since by the very definition of a
beam, the coordinates of �Z are ”small”,M is usu-
ally only weakly nonlinear; because of this, its
determination and analysis is very amenable to
perturbative techniques. The very first step
in this process is to consider only the lineariza-
tion M of M, the so-called linear map. Let
N =M−M be the remaining purely nonlinear
part, so that we have

M =M +N (29)

The linear map M is simultaneously the most
important and the easiest to study, and a great
deal of these lectures is related to it. The treat-
ment of the nonlinear part N is much more com-
plicated, and only later in the course will we ad-
dress a small part of the problematic associated
with its treatment.
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In the next section, we will make a short ex-
cursion to a field that is at first sight disconnected
from beam physics, namely the field of glass op-
tics. However, a more close look shows that glass
optics, which has existed long before the name
beam physics has been introduced, certainly be-
longs to this field: the ensembles of light particles
or rays typically associated with questions of glass
optics form a beam not only in the conventional
meaning of the word, but also under our stronger
more formal definition.

B. Glass Optics

As one may recall from a basic course in
optics, a distinction is made between so-called
”Gaussian optics”, which indeed turns out to
just mean linear motion, and ”aberrations” that
describe nonlinear effects. Optics has developed
its very own jargons and techniques, some of
which are connected to complicated geometric
ideas, and it is historically unfortunate that op-
tics has not been treated with the methods of the
transfer map. We shall remedy this situation
here by simultaneously providing a short course
on Gaussian optics in an appealing and unified
way, and also develop our skills in dealing with
linear maps.

For simplicity, let us restrict ourselves to sys-
tems that are rotationally symmetric, like most
glass optical systems; it will be quite clear as we
go what has to be done to treat non-rotationally
symmetric systems. In this rotationally symmet-
ric case, two variables are enough to study the
motion; we here choose them as the position x
and the slope m of a ray. The transfer map of an
optical system than expresses how (x,m) behave
as they transfer a system, and we haveµ

x2
m2

¶
=M

µ
x1
m1

¶
. (30)

In fact, if we restrict ourselves to linear motion,
then this can be expressed in terms of a transfer

matrix

M =

µ
(x, x) (x,m)
(m,x) (m,m)

¶
. (31)

Note that the notation for the matrix elements
is such that the quantity before the comma de-
scribes the row, and that after the comma de-
scribes the column. We remind again that know-
ing matrices of pieces allows the computation of
matrices of more complicated systems, which is
here achieved by mere matrix multiplication. In-
deed, if M1 through Mn are the matrices for the
subsystems, then because of the associativity of
matrix multiplication, we obtain for the ray after
the last subsystem:

µ
xn+1
mn+1

¶
= Mn

µ
· · ·
µ
M1

µ
x1
m1

¶¶
· · ·
¶
(32)

= (Mn · · · · ·M1)

µ
x1
m1

¶
(33)

So we have shown that the matrix of a com-
bined system equals to product of matrices of sub-
systems. Since especially on computers it is very
simple to multiply matrices, this is the method
of choice for the basic design of optical systems.
In the following, we hence derive the forms of the
matrices of common optical elements.

1. The Drift

The simplest part of glass optical elements
is a region which doesn’t contain any material,
the drift. If we denote by x the position of a ray
and by m its slope, then the final values x2 and
m2 after a drift of length l can be connected very
simply to the initial values x1 and m1:
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l

x
m

x2 = x1 +m1 · l (34)

m2 = m1 (35)

This can obviously be written in a matrix form:µ
x2
m2

¶
=

µ
1 l
0 1

¶µ
x1
m1

¶
(36)

For the later discussion it will prove important to

note that the matrix
µ
1 l
0 1

¶
depends only on

the characteristic properties of the element, which
here is the length l. On the other hand, the vectorµ

x1
m1

¶
depends only on the parameters of the

ray. Altogether, a drift performs a linear transfor-
mation in x,m space. Note that the determinant
of the drift matrix is unity.

As a small exercise, let us now consider a
combination of two drifts of lengths l1and l2, and
let us ask ourselves for the value of the coordinates
(x3,m3) after the combination of the two drifts.
We obviously have

µ
x3
m3

¶
=

µ
1 l2
0 1

¶µ
x2
m2

¶
=

µ
1 l2
0 1

¶µ
1 l1
0 1

¶µ
x1
m1

¶

=

µ
1 l1 + l2
0 1

¶µ
x1
m1

¶
(37)

Here the necessary composition of maps just re-
duces to a common multiplication of transfer
matrices. And the result is not surprising, the ef-
fect of two subsequent drifts is just the same as
that of a drift of the combined length.

2. The Thin Lens

Besides empty space, glass optical devices
contain lenses that change the direction of the
light ray. We are here primarily interested in the
thin lens, a somewhat idealized device without
any length, which is characterized by the follow-
ing facts that are also illustrated in the picture
below:

1. Positions are not changed, but directions are

2. Any bundle of parallel light is unified in one
point a distance f after the lens

3. A ray lighting the center of the lens goes
straight through

x1 , m1

x2 , m2

A

f

P

P

lens

The quantity f that describes the lens is
called the focal length. Let us now consider a
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ray going through the lens; from the picture we
read

x2 = x1 (38)

p = f ·m1 (39)

x1 +m2 · f = p (40)

From which we infer

x2 = x1 (41)

m2 = −x1
f
+m1 (42)

This relationship can again be written in matrix
form:

µ
x2
m2

¶
=

µ
1 0
− 1

f
1

¶µ
x1
m1

¶
(43)

As in the case of the drift, the matrix
µ

1 0
− 1

f
1

¶
depends only on the lens, whereas the vectorµ

x1
m1

¶
depends on the ray.

The simple thin lens we have discussed here,
the so-called ”Gaussian” lens, represents quite an
approximation for several reasons. First of all,
any real lens performs a refraction at two differ-
ent surfaces, so positions do change as one goes
through the lens. Furthermore, for most lenses it
is not really true that parallel rays all meet at a
point a distance f behind the lens. This is con-
nected to the fact that lenses are usually ground
with spherical surfaces because anything else is
technically difficult. Furthermore, the glass has
dispersion and so different colors are affected dif-
ferently. We note however that Snell’s law still
allows to determine the true transfer map of a
thick, spherical lens in a rather straightforward
way. It is important to note, however, that this
transfer map will no longer be linear.

Quite interesting is the combination of two
glass lenses, which can apparently be described
by multiplying their matrices (note that always,
the matrix of the first element is on the right).
We obtain

µ
1 0
− 1

f2
1

¶µ
1 0
− 1

f1
1

¶
=

µ
1 0

− 1
f1
− 1

f2
1

¶
(44)

So the combination of two lenses provides the
same effect as one lens with focus length f , where
1/f = 1/f1 + 1/f2. This is of course a famous
law of optics, the derivation of which is trivial is
all but trivial in the matrix concept. Some of the
power of the matrix approach becomes clear how
powerful it is to prove this law using the standard
geometric method of optics text books.

In a similar way as the focusing thin lens we
can also treat the defocusing thin lens. In this
case, the basic properties are

1. Positions are not changed, but directions are

2. Any bundle of parallel light exits the lens in
such a way that it appears to come from a
point a distance f in front of the lens

3. A ray lighting the center of the lens goes
straight through
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f

P

lens

1 2

m1

m2

In a similar way as before, we can use basic
geometry to determine the action of the lens; we
read from the picture

x2 = x1 (45)

p = −fm1 (46)

p = x2 − fm2 (47)

Similar to before, we get m2 = x2/f + m1,and
altogether in matrix form

µ
x2
m2

¶
=

µ
1 0
1
f
1

¶µ
x1
m1

¶
. (48)

This is essentially the same matrix as before, ex-
cept that now the sign of the matrix element
(m,x) has changed. Indeed, using the standard
convention to count defocusing lenses with a neg-
ative focal length, the matrix has even exactly the
same form as before.

3. The Thin Mirror

Besides lenses, mirrors are probably the sec-
ond most important optical device, and similar to

before, there are focusing and defocusing mirrors.
Different from the lens, in the case of the mirror
the reference orbit flips direction when hitting the
mirror. A thin focusing mirror is defined by what
it does to an ensemble of parallel light via the
three conditions

1. Positions are not changed, but directions are

2. Any bundle of parallel light that is reflected
by the mirror will meet in a point a distance
f in front of the mirror

3. A ray hitting the center of the mirror is re-
flected such that its outgoing angle equals its
incoming angle

f f

mirror

A similar argument as in the case of the fo-
cusing lens shows that the transfer matrix of the
focusing mirror is

M =

µ
1 0
−1/f 1

¶
(49)

There is also a defocusing mirror, defined by the
three conditions

1. Positions are not changed, but directions are

2. Any bundle of parallel light that is reflected
by the mirror seems to emerge from a point
a distance f behind the mirror
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3. A ray hitting the center of the mirror is re-
flected such that its outgoing angle equals its
incoming angle

A similar argument to before shows that also
in this case, we have the transfer matrix

M =

µ
1 0
−1/f 1

¶
, (50)

where the convention to count the focal length f
of a defocusing element negative is used.

So apparently mathematically, lenses and
mirrors behave the same, aside from the fact that
they reverse the reference orbit. The choice which
to use in practice depends on a variety of practi-
cal factors. For situations requiring only small
apertures like in most camera lenses, glass lenses
are easily made, and have an advantage because
of the straight beam path. For situations requir-
ing large apertures, like in big telescopes, mirrors
are the primary choice because it is much easier to
manufacture and support large mirrors than large
lenses. It is also easier to produce non-spherical
shapes for mirrors than for lenses. Finally, mir-
rors have the additional advantage that they treat
light of different colors equally, they don’t show
the dispersion commonly observed in glass lenses.

4. Liouville’s Theorem for Glass Optics

As a direct consequence of the matrix no-
tation for glass optics introduced above, for any
combination of lenses, drifts, and mirrors, we can
prove a special case of Liouville’s Theorem:
The volume of phase space occupied by the beam
is conserved.

Indeed, let us assume we have an optical sys-
tem consisting of n elements with matrices Mi.
Then we have

µ
xn+1
an+1

¶
= Mn

µ
Mn−1

µ
· · ·M1

µ
x1
a1

¶
· · ·
¶¶

= (Mn ·Mn−1 · · ·M1)

µ
x1
a1

¶
; (51)

but the determinants of each of the matrices Mi

are just unity, as they are all either drifts, lenses
or mirrors, and so the determinant of the product
is unity. But since under linear transformations,
volumes in space transform with the size of the
determinant, the volume is indeed conserved.

Liouville’s Theorem

An interesting and remarkable consequence
of Liouville’s Theorem is the famous repetition
theorem of Poincare. Let us assume we have some
motion in n-dimensional phase space, and let us
assume that we know that the motion is bounded.
Let us further assume that the motion obeys Liou-
ville’s Theorem, which as we shall later see is the
case for all Hamiltonian systems, and let the mo-
tion be deterministic. Then Poincare’s repetition
theorem states that for any given ε, the system af-
ter sufficient time comes back to its original state
within a tolerance of at most ε.

Before we illustrate the proof of Poincare’s
theorem, let us illustrate some of its consequences.
Consider for example a box with classical gas par-
ticles that are initially all located in one side of the
box and kept there by a wall. After the wall is re-
moved, the gas particles will distribute in the box
evenly, as we expect from classical statistical me-
chanics, increasing their entropy. But their phase
space is bounded: the positions cannot leave the
box, and each particle’s momentum is limited by
the total heat energy contained in the box.

But as time progresses, according to
Poincare, they will at one time in the future
just recollect on one side of the box; and by re-
inserting the wall, they will be caught again on
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one side, in crass contradiction to the entropy
principle.
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but later ...

Poincare’s Repetition Theorem

Other examples abound: if we have a particle
beam in an accelerator that we know is stable, it
will eventually come back as close as we want in
phase space - an effect that is actually observed
somewhat routinely in tracking pictures. Even for
our daily life, there are important consequences:
if the universe is Hamiltonian and doesn’t expand
indefinitely, then up to minute details, history will
keep repeating itself; we will all be born again,
and we will all make the same mistakes all over;
but since now we can’t remember anything about
our past life, also next time we won’t remember
our current life ...

Now for the sketch of the proof of the repeti-
tion theorem: Let an ε be given, and consider an
ε-ball with volume Vε in phase space. Consider
its motion by regular time steps ∆t. Since the
total available phase space volume is finite, say
Vp, after at most Vp/Vε time steps, the image of
the ball must reach a part of phase space it has
touched before, i.e. it must overlap a previous im-
age of the ball. Let us assume this happens after
N steps, and let us assume that the previous im-
age is that after n steps, with n < N. But if the

images after n steps In and after N steps IN over-
lap, so must the images after (n− 1) and (N − 1)
steps, respectively; and continuing backwards, so
must the images after 0 and (N −n) steps; hence
after (N − n) steps, we touch the original ε-ball
again.

C. Special Optical Systems

In this section we want to apply the matrix
techniques to the study of certain special cate-
gories of systems. In particular, we associate cer-
tain fundamental properties of systems with prop-
erties of the matrix. We begin with the imaging
systems.

1. Imaging (Point-to-Point, · ·) Systems

Imaging systems are perhaps the most im-
portant systems in optics, and they deserve some
special attention. Suppose we study the action
of a slide projector. At one end of the projec-
tor, light is sent through the slide. Suppose the
slide shows a tree in the fall with one last green
leaf. The image of this tree is to appear on the
screen, and the green leaf is to appear at one par-
ticular location. This requires that all light going
through the green spot on the slide in various di-
rections has to be re-united at one spot on the
screen.

Camera
lens

This means that the final position of a ray is
independent of its initial angle and only depends
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on the initial position. In terms of transfer ma-
trices

M =

µ
(x | x) (x | m)
(m | x) (m | m)

¶
(52)

this means that the element (x | m) has to vanish.
Obviously the element (x, x) also has an impor-
tant interpretation: it is the magnification of the
system.

Besides the case of the slide projector, many
other devices use imaging. They include the cam-
era, the overhead projector, the eye, the photo-
graphic microscope, the electron microscope, as
well as particle spectrographs.

It is worthwhile to study how imaging sys-
tems can be made. First of all we observe that a
drift is imaging if and only if l = 0, a rather bor-
ing choice. A single lens is also always imaging as
long as there are no drifts before and after, but
that is another boring choice. The first interest-
ing imaging system is the DLD system, consisting
of a drift, a lens, and another drift. The transfer
matrix of the DLD system is given by

M =

µ
1 l2
0 1

¶µ
1 0
− 1

f
1

¶µ
1 l1
0 1

¶
(53)

=

µ
1 l2
0 1

¶µ
1 l1
− 1

f
1− l1

f

¶
(54)

=

Ã
1− l2

f
l1 + l2 − l1l2

f

− 1
f

1− l1
f

!
(55)

If such a system is supposed to be imaging, we
have to satisfy (x,m) = 0, or l1 + l2 − l1l2/f = 0,
which is equivalent to

1

l1
+
1

l2
=
1

f
(56)

This is another important result of conventional
optics, which here is obtained in an almost trivial
way. If the DLD system is actually imaging. In
this case, the magnification is given by (x, x) and
hence has the value 1− l2/f = −l2/l1.

This principle is used in several different de-
vices. In the slide projector, l1 is very small and
l2 is very large, providing a large magnification.
Probably the most important imaging system is
the eye. Here the situation is just the opposite:
l1 is large and l2 is small, allowing for large things
to be mapped on the small retina of the eye.

It is interesting to study the combination of
two imaging systems:

µ
(x | x)2 0
(m | x)2 (m | m)2

¶
·
µ
(x | x)1 0
(m | x)1 (m | m)1

¶
=

µ
(x | x)2(x | x)2

(m | x)2(x | x)1 + (m | m)2(m | x)1
0

(m | m)2(m | m)1

¶
(57)

As is to be expected, the total system is again
imaging, and the magnification is just the product
of the individual magnifications.

2. Parallel-to-Point (k ·) Systems

As we saw above, the human eye observing
a nearby object is one of the prime examples of
an imaging system. But what happens if the eye
looks at things farther and farther away, in partic-
ular at the stars, a pastime of the human race and
scientists for eternity? The length of the first drift
l1 becomes larger and larger, and for all practical
purposes the light coming from one star reaches
the eye as a parallel bundle. So what the eye is to
interpret now is the angle under which the light
comes in, and hence the position on the retina
should depend only on the initial angle, but not
on the initial position at which the light strikes
the eye.
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This requires that (x|x) = 0. If we look at
the eye as a DLD system, this requires 1− l2/f =
0 ⇔ l2 = f , l1 arbitrary. Thus the retina has to
be exactly at the focal length; almost as impor-
tant is that the distance to the object is arbitrary
since we cannot change our distance to the stars
significantly. Another important parallel-to-point
system is the photographic camera.

3. Point-to-Parallel (· k) Systems

Another important class of systems is the
point to parallel systems. In point to parallel sys-
tems, the final slope does depend only on the ini-
tial position, but not on the initial slope. So we
have (m|m) = 0.

Examples include the flashlight, the micro-
scope, and the SDI Transport over long distances.
As an example, let us try to achieve a point-to-
parallel system with a DLD combination. We ob-
tain

1− l1/f = 0 or l1 = f, (58)

as we may have expected. Note there is no con-
dition on l2,which is fairly important for the op-
eration of a microscope as it allows the observer
to move his eyes.

From the transfer matrices, it follows rather
directly that the combination of a point to parallel
and a parallel to point system forms a point to

point system. Using the relaxed eye as the parallel
to point system, we can thus build a microscope
by putting a suitable point to parallel system in
front of the eye. It is interesting to see how the
lengths in a point to parallel system have to be
chosen; we obtain (m|m) = 0 ⇔ 1− l1/f = 0 ⇔
l1 = f , l2 arbitrary. The first part is as expected;
the latter part is helpful because it allows the eye
to move with respect to the microscope.

4. Parallel-to-Parallel (k k) Systems

The final important system is the parallel to
parallel system. By putting it between the eye
and the stars, a magnification of angles can be
achieved. This is the principle of the telescope.

The system has to be such that the final slope
depends on the initial slope, but not on the initial
x, which requires (m|x) = 0. The magnification
is given by (m,m). If we try to achieve this with
a DLD system, then we have to satisfy −1/f = 0,
which is impossible. This entails that a telescope
has to contain at least two lenses.

So let us consider an LDL system; we have

M =

µ
1 0
− 1

f2
1

¶µ
1 l
0 1

¶µ
1 0
− 1

f1
1

¶
(59)

=

µ
1− l

f1
l

− 1
f2
− 1

f1
+ l

f1f2
1− l

f2

¶
(60)

and thus we have to satisfy

− 1
f2
− 1

f1
+

l

f1f2
= 0 or l = f1 + f2, (61)
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which is actually a well-known condition for New-
tonian or Galilean telescopes. The magnification
of the telescope is given by

(m,m) = 1− l

f2
= 1− 1

f2
(f1 + f2) = −

f1
f2
;

thus to obtain large magnification requires f1 À
f2. Since there is a limit on how short f2 can be, it
is thus necessary to make f1 large, which entails
the rather large size telescopes usually have.

5. Combination Systems

Often the question arises to what extent it
is possible to simultaneously satisfy the require-
ments for the above systems. To some extent this
is possible, but the fact that the determinant of
the total system has to be unity imposes some
restrictions. A closer look shows that

1. • • and kk is possible : (x | m) = (m | x) = 0

2. k • and • k is possible : (x | x) = (m | m) = 0

All other cases are impossible because they
would require a zero determinant.

Another important question is what happens
when two systems satisfying certain properties are
combined into one system; for example, we al-
ready saw in eq. (57) that two point-to-point sys-
tems placed behind each other again produce a
point-to-point system. A more detailed analysis
shows that of the sixteen cases describing com-
binations of two systems, eight lead to another
special system

• • + • • = • • , k k + k k = k k
• • + • k = • k , k k + k • = k •
• k + k • = • • , k • + • k = k k
• k + k k = • k , k • + • • = k •

(62)
The entries in the table are easy to memorize
because it contains just those combinations for
which the second symbol of the first system equals

the first symbol of the second system, and the fi-
nal result is obtained by ”dropping” the two iden-
tical symbols. So in compact notation, we have:

If A,B,C ∈ {•, k}, then
AB +BC = AC. (63)

V. Fields and Potentials

For the study of transfer maps of particle op-
tical systems, it is first necessary to undertake a
classification of the possible fields that can occur.
All fields are governed byMaxwell’s equations,
which in SI units have the form

div �B = 0 (64)

curl �H = �j +
∂ �D

∂t
(65)

div �D = ρ (66)

curl �E = −∂
�B

∂t
(67)

In the case of particle optics, we are mostly
interested in cases in which there are no sources
of the fields in the region where the beam is lo-
cated, and so in this region we have ρ = 0 and
�j = �0. Of course any beam that is present would
represent a ρ and a �j, but these effects are usually
considered separately.

In the following, we want to restrict ourselves
to time-independent situations, and neglect the
treatment of elements with quickly varying fields
including cavities. This limitation in very good
approximation also includes slowly time-varying
fields like the magnetic fields that are increased
during the ramping of a synchrotron. In this case,
Maxwell’s equations simplify to

div �B = 0 , curl �H = �0

div �D = 0 , curl �E = �0 (68)

where �B = μ0H and �D = ε0 �E. Because of
the vanishing curl, we infer that �B and �E have
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scalar potentials VE and VB such that

�E = −�∇VE and �B = −�∇VB (69)

Note that here even the magnetic field is de-
scribed by a scalar potential, and not by the vec-
tor potential �A that always exist. From the first
and third equations, we infer that both scalar po-
tentials VE and VB satisfy Laplace’s equation, and
we thus have

∆VE,B = 0. (70)

In order to study the solutions of Laplace’s equa-
tions for the electric and magnetic scalar poten-
tials, we will proceed for two special cases, each
of which will be treated in a coordinate system
most suitable for the problem.

A. Fields with Straight Reference
Orbit

The first major case of systems is those that
have a straight reference orbit. In this case, there
is no need to distinguish between particle opti-
cal coordinates and Cartesian coordinates, and in
particular there is no need to transform Laplace’s
equation to a new set of coordinates. Many el-
ements with a straight reference orbit possess a
certain rotational symmetry around the axis of
the reference orbit, and it is most advantageous
to describe the potential in cylindrical coordi-
nates with a ”z axis” that coincides with the ref-
erence orbit. We first begin by expanding the
r and φ components of the potential in Taylor-
and Fourier series, respectively; the dependence
on the cylindrical ”z” coordinate, which here co-
incides with the particle optical coordinate s, is
not expanded. So we have

V =
∞X
k=0

∞X
l=0

Mk,l (s) cos (lφ+ θk,l) r
k (71)

In cylindrical coordinates, the Laplacian has the
form

∆V =
1

r

∂

∂r

µ
r∂V

∂r

¶
+
1

r2
∂2V

∂φ2
+

∂2V

∂s2
= 0; (72)

inserting the Fourier-Taylor expansion of the po-
tential, we obtain

∆V =
1

r

∂

∂r

µ
r∂V

∂r

¶
+
1

r2
∂2V

∂φ2
+

∂2V

∂s2
=

=
1

r

∂

∂r

( ∞X
k=1

∞X
l=0

Mk,l cos (lφ+ θk,l) kr
k

)

+
1

r2

∞X
k=0

∞X
l=0

Mk,l cos (lφ+ θk,l)
¡
−l2
¢
rk

+
∞X
k=0

∞X
l=0

M
00
k,l (s) cos (lφ+ θk,l) r

k

=
∞X
k=1

∞X
l=0

Mk,l cos (lφ+ θk,l) k
2rk−2

−
∞X
k=0

∞X
l=0

Mk,l cos (lφ+ θk,l) l
2rk−2 +

+
∞X
k=2

∞X
l=0

M
00
k−2,l (s) cos (lφ+ θk−2,l) r

k−2

Now we note that in the first term, it is possi-
ble to let the sum start at k = 0 since there is
no contribution anyway because of the factor k2.
Furthermore, using the convention that the co-
efficient Mk,l(s) vanish for negative indices, we
obtain

∆V =
∞X

k,l=0

½
Mk,l (s) cos (lφ+ θk,l) (k

2 − l2)
+M

00
k−2,l (s) cos (lφ+ θk−2,l)

¾
rk−2

(73)
We begin the analysis by studying the case

k = 0. Apparently M0,0 and θ0,0 can be cho-
sen freely because the factor (k2 − l2) vanishes.
Furthermore, since M

00
k−2,l (s) vanishes for all l

because of the convention regarding negative in-
dices, we infer M0,l = 0 for l ≥ 1.
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By induction over k, we now show that
Mk,l(s) ≡ 0 for all cases where k < l. Appar-
ently the statement is true for k = 0. Now let us
assume that the statement is true up to k − 1. If
k < l, also k − 2 < l, and thus M

00
k−2,l (s) = 0.

Since (k2 − l2) 6= 0 and cos (lφ+ θk,l) 6= 0 for
some φ because l 6= 0, this requires Mk,l (s) ≡ 0
for k < l. Thus the infinite matrixMk,l is strictly
lower triangular.

We now study the situation for different val-
ues of l. We first notice that for all l, the choices
of

Ml,l(s) and θl,l are free (74)

because M
00
l−2,l (s) = 0 by the previous observa-

tion, and (k2 − l2) = 0 because k = l. Next we
observe that the value Ml+1,l(s) must vanish, be-
cause (k2 − l2) 6= 0, but M

00
l−1,l (s) ≡ 0 because

of the lower triangularity. Recursively we even
obtain that

Ml+1,l(s),Ml+3,l(s), ... vanish. (75)

On the other hand, for k = l + 2, we obtain that
θl+2,l = θl,l, and Ml+2,l(s) is uniquely specified by
Ml,l(s). Applying recursion, we see that in general

θl,l = θl+2,l, θl+4,l, ... and

Ml+2n,l(s) =
M

(2n)
l,l (s)Qn

ν=1

¡
(l)2 − (l + 2ν)2

¢ · (76)
Let us now proceed with the physical inter-

pretation of the result. The number l is called the
multipole order, as it describes how many oscil-
lations the field will experience in one 2π sweep of
φ. The free term Ml,l(s) is called the multipole
strength, and the term θl,l is called the multi-
pole phase. Apparently, frequency l and ra-
dial power k are coupled: The lowest order in
r that appears is l, and if the multipole strength
is s-dependent, also the powers l+2, l+4, ... will
appear.

For a multipole of order l, the potential has
a total of 2l maxima and minima, and is so often

called a 2l-pole. Often Latin names are used
for the 2l poles, and we have the following table:
l Leading Term in V Name
0 M0,0(s) cos (θ0,0)
1 M1,1(s) cos (φ+ θ1,1) r Dipole
2 M2,2(s) cos (2φ+ θ2,2) r

2 Quadrupole
3 M3,3(s) cos (3φ+ θ3,3) r

3 Sextupole
4 M4,4(s) cos (4φ+ θ4,4) r

4 Octupole
5 M5,5(s) cos (5φ+ θ5,5) r

5 Decapole
In many cases it is very important to study

the Cartesian (and hence also particle optical)
form of the fields of the elements. The case k = 1
with V = M1,1 cos (φ+ θ1,1) r is quite trivial; for
θ22 = 0,we obtain V = M1,1 · x, correspond-
ing to a uniform field in x-direction, and for an-
other important sub-case θ22 = −π/2, we obtain
V = M1,1 · y, a uniform field in y-direction. In
both of these cases, the reference orbit is indeed
a straight line only in the limit of weak fields.

The case k = 2 has V =
M2,2 cos (2φ+ θ22) r

2. Particularly impor-
tant in practice will be the sub-cases θ22 = 0 and
θ22 = −π/2. In the first case, we get

V = M2,2 cos (2φ) r
2

= M2,2

¡
cos2 φ− sin2 φ

¢
r2

= M2,2

¡
x2 − y2

¢
, (77)

and in the second case we have

V = M2,2 cos (2φ− π/2) r2

= M2,2 sin (2φ) r
2 (78)

= M2,2 (2 sinφ cosφ) r
2

= M2,2 (2xy) (79)

All other angles θ22 lead to formulas that are more
complicated; they can be obtained from the ones
here by subjecting the x, y coordinates to a suit-
able rotation. This again leads to terms of purely
second order.

Because the potential is quadratic, the result-
ing fields �E or �B are linear. Indeed, the quadru-
pole is the only s-independent element that
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leads to linear motion similar to that in glass
optics, and thus has great importance. In the
electric case, one usually chooses θ2,2 = 0, result-
ing in the fields

Ex = −2M2,2 · x (80)

Ey = 2M2,2 · y. (81)

So different from the case of glass optics, it turns
out that the motion cannot be rotationally
symmetric anymore: if there is focusing in the
x-direction, there is defocusing in the y-direction,
and vice versa! This effect, completely due to
Maxwell’s equations, turns out to be perhaps the
biggest ”nuisance” in beam physics: if one uses
piecewise s-independent particle optical elements,
the horizontal and vertical planes are always
different from each other.

To make an electrostatic device that pro-
duces a quadrupole field, it is best to carve the
electrodes along the equipotential surfaces, and
utilize the fact that if ”enough” boundary con-
ditions are specified, the field is uniquely deter-
mined, and must hence be as specified by the for-
mula used to determine the equipotential surfaces
in the first place. So in practice, the electrodes of
an electric quadrupole often look as shown in the
picture.

x

y -

-

++

In the magnetic case one indeed chooses
θ2,2 = −π/2, resulting in

Bx = −2M22 · y (82)

By = −2M22 · x, (83)

and looking at the Lorentz forces that a parti-
cle moving mostly in s-direction experiences, we
again see that if there is focusing in x-direction,
there is defocusing in y-direction and vice versa.

To study higher orders in k, let us consider
the case k = 3. For θ3,3 = 0, we obtain

V = M3,3 cos (3φ) r
3

= M3,3 (cosφ cos 2φ− sinφ sin 2φ) r3

= M3,3

¡
xr2 cos 2φ− yr2 sin 2φ

¢
= M3,3

©
x
¡
x2 − y2

¢
− 2xy2

ª
M3,3

¡
x3 − 3xy2

¢
. (84)

In this case, the resulting forces are quadratic,
and are thus not suitable for the affecting the lin-
ear motion; but we shall see later that they are
indeed very convenient for the correction of non-
linear motion, and they even have the nice fea-
ture of having no influence on the linear part

26



of the motion! Another important case for θ3,3
is θ3,3 = −π/2, in which case one can perform a
similar argument and again obtain cubic depen-
dencies on the position.

For all the higher values of l, correspond-
ing to octupoles, decapoles, duodecapoles etc, the
procedure is very similar. We begin with the
addition theorem for cos(lφ) or sin(lφ), and by
induction we see that each of which consists of
terms that have a product of precisely l cosines
and sines. Since each of these terms is multiplied
with rl, each cosine multiplied with one r trans-
lates into an x, and each sine multiplied with one
r translates into a y; the end result is always a
polynomial in x and y of exact order l.

Because of their nonlinear field dependence,
these elements will prove to have no effect on the
motion up order l−1,and thus allow to selectively
influence the higher orders of the motion without
affecting the lower orders. And if it is the crux
of particle optical motion that the horizontal and
vertical linear motion cannot be affected simul-
taneously, it is its blessing that the nonlinear
effects can be corrected order-by-order.

In the case there is no s-dependence, the po-
tential terms that we have derived are the only
ones; under the presence of s-dependence,
as shown in eq. (76), to the given angular de-
pendence there are higher order terms in r, the
strengths of which are given by the s-derivatives
of the multipole strength Ml,l. The computation
of their Cartesian form is very easy once the
Cartesian form of the leading term is known, be-
cause each additional term just differs by the pre-
vious one just by the factor of r2 = (x2 + y2).

In practice, of course, s-dependence is un-
avoidable: the field of any particle optical element
has to begin and end somewhere, and it usually
does this by rising and falling gently with s, entail-
ing s-dependence. This actually entails another
crux of particle optics: even the quadrupoles, the
”linear” elements, have nonlinear effects
at their edges, requiring higher order correction.

The corrective elements in turn have higher order
edge effects, possibly requiring even higher order
correction, etc.

s

Mk,k

fringe field fringe field

While without s-dependence, the case l = 0
corresponding to full rotational symmetry was not
very interesting, if we consider s-dependence, it
actually offers a remarkably useful effect. While
there is no r-dependence in the leading term, the
contributions through the derivatives of M0,0(s)
entail terms with an r-dependence of the form
r2, r4, . . . Of these, the r2 terms will indeed pro-
duce linear, rotationally symmetric fields,
similar to those in the glass lens. Unfortunately,
in practice these fields are restricted to the en-
trance and exit fringe field regions and are com-
paratively weak; furthermore, there are usually
quite large nonlinearities, and altogether these de-
vices are usually used mostly for low-energy, small
emittance beams, like those found in electron mi-
croscopes.
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s0

V=M0,0

marked parts have the strongest effect
of rotational invariance

B. Fields with Planar Reference
Orbit

In the case of the straight reference orbit, we
saw that Maxwell’s equations entail a very clean
connection between rotational symmetry and ra-
dial potential. As one may expect, in the case of a
non-straight reference orbit, this is no longer the
case; in this situation, Maxwell’s equations have
a rather different but not less interesting conse-
quence as long as we restrict ourselves to the case
in which the reference orbit stays in one plane.

As it turns out, in this case the arguments
to express the Laplacian in the new coordinates
is similar to that in cylindrical coordinates. Let
us assume that the motion of the reference parti-
cle is in a plane, and that all orbits that are on
this plane stay in it. Let R(s) be the momentary
radius of curvature as shown in the picture.

Bending Magnet

R(s)

Then we have a situation very similar to

cylindrical coordinates r, φ, z centered around the
momentary origin of R(s). In fact, setting h(s) =
1/R(s), the particle optical coordinates s, x, y cor-
respond to the cylindrical ones in the following
way:

z ↔ y

r ↔ (1 + hx) ·R(s)
φ ↔ s

R(s)

As we recall from the previous section, in cylin-
drical coordinates the Laplacian had the form

∆V =
1

r

∂

∂r

µ
r
∂V

∂r

¶
+
1

r

∂

∂φ

µ
1

r

∂V

∂φ

¶
+

∂2V

∂z2

So we may expect that in particle optical coordi-
nates, we in fact have

∆V =
1

1 + hx

∂

∂x

µ
(1 + hx)

∂V

∂x

¶
+

1

1 + hx

∂

∂s

µ
1

1 + hx

∂V

∂s

¶
+
∂2V

∂y2
. (85)

A careful analysis based on the chain rule and de-
termining the proper Jacobian reveals that this
is indeed the case; the calculations are rather me-
chanical, but very involved and rather boring, and
we skip them for the purposes of these lectures.

For the potential, we again make an expan-
sion in transversal coordinates, and leave the lon-
gitudinal coordinates unexpanded. Since we are
working now with x and y, both expansions are
Taylor, and we have

V =
∞X
k=0

∞X
l=0

ak,l (s)
xkyl

k!l!
.

This expansion now has to be inserted into the
Laplacian in particle optical coordinates. Besides
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the mere differentiation, we also have to Taylor
expand 1/(1+hx) = 1−(hx)+(hx)2−(hx)3+ . . .
After gathering like terms and heavy arithmetic,
and again using the convention that coefficients
with negative indices are assumed to vanish, we
obtain the recursion relation

ak,l+2 = −a00k,l − kha
00
k−1,l

+kh
0
a
0
k−1,l − ak+2,l

− (3k + 1)hak+1,l
−3khak−1,l+2
−k (3k − 1)h2ak,l
−3k (k − 1)h2ak−2,l+2
−k (k − 1)2 h3ak−1,l
−k (k − 1) (k − 2)h3ak−3,l+2 (86)

Although admittedly horrible and unpleasant, the
formula apparently has the coefficient of highest
total order k + l + 2 on the left hand side, and
thus recursively allows the calculation of coeffi-
cients. Indeed, the terms ak,0 (s) , ak,1 (s) can be
chosen freely, and all others are uniquely deter-
mined through them.

To study the significance of the free terms,
let us consider the electric and magnetic case
separately. In the electric case, in order to as-
sure that orbits that were in the plane stay there,
there must not be any field components in the
y-direction in the plane corresponding to y = 0.
Computing the gradient of the potential, we have

Ex (x, y = 0) = −
X
k

ak,0
xk−1

(k − 1)!

Ey (x, y = 0) = −
X
k

ak,1
xk

k!
= 0

and looking at Ey,we conclude that ak,1 =
0 for all k. So the terms ak,0 alone specify the
field. Looking at Ex,we see that these are just
the coefficients that specify the field within the
plane, and so the planar field determines the

entire field. Furthermore, looking at the details
of the recursion relation, it becomes apparent that
all second indices are either l or l+2. This entails
that as long as ak,1 terms do not appear, also ak,3,
ak,5,... terms do not appear. Indeed, the resulting
potential is fully symmetric around the plane, and
the resulting field lines above and below the plane
are mirror images.

In the magnetic field, the argument is rather
similar: considering the fields in the plane, we
have

By (x, y = 0) = −
X
k

ak,1
xk

k!

Bx (x, y = 0) = −
X
k

ak,0
xk−1

(k − 1)! = 0

In order for particles in the midplane to stay
there, we must have that Bx vanishes in the mid-
plane, which entails ak,0 = 0. So in the mag-
netic case, the coefficients ak,1 specify everything.
These coefficients, however, again describe the
shape of the field in plane, and so again the pla-
nar field determines the entire field. In the
magnetic case, the potential is fully antisymmet-
ric around the plane, and again the resulting field
lines are mirror images of each other.

VI. The Equations of Motion in
Curvilinear Coordinates

There are a variety of methods to derive
the equation of motion in curvilinear coordinates
with the arclength s as the independent variable.
Perhaps the most sophisticated and appealing of
them is in the Lagrangian picture, in which one
first expresses Cartesian variables by curvilinear
coordinates and re-writes the Lagrangian. Then
one proceeds to the Hamiltonian through a Legen-
dre transformation. In the Hamiltonian picture,
it is then possible to perform a change of inde-
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pendent variable from t to s while maintaining
the Hamiltonian structure.

While very illuminating, the Lagrangian-
Hamiltonian mechanism is too involved for
our purposes and the limited amount of time
we have, and we thus follow a more straightfor-
ward, classical way. For simplicity, we also re-
strict ourselves in that the reference orbit is al-
lowed to bend in only one plane. As a function
of the arclength s, we first define the momentary
curvature of the reference orbit as h(s). If the
curvature is nonzero, the radius of curvature is
then given by R(s) = 1/h(s).We begin by study-
ing the bend angle that the reference orbit expe-
riences as we move from position s0 to position s.
We have

α =

Z
α0

αdα =

Z s

s0

ds

R(s)
=

Z s

s0

h(s)ds (87)

Let us remind ourselves that in Cartesian coordi-
nates, the equations of motion have the Lorentz
form

d

dt
�p = �F , and

d

dt
�r =

�p
mq

1 + p2

m2c2

(88)

Note that in the second equation, we have ex-
pressed the velocity-dependent terms purely in
terms of �p, as we want to maintain only one mo-
mentum or velocity component. For the purpose
of our derivation, we re-write the equations as an
integral equation:

�p(s) = �p(s0) +

Z t(s)

t(s0)

�F (t)dt (89)

= �p(s0) +

Z s

s0

�F (s)t
0
ds,

where we have used t
0
= dt/ds, and it is worth-

while to remind ourselves that force �F (s) still

depends on both �x and �p. As we have pro-
gressed from s0 to s, the orientation of our lo-
cally attached particle optical coordinate system
has changed, it was rotated by the angle α of eq.
(87). So in the new local coordinates, we have

�pl(s) =

⎛⎝ cos
R s
s0
h 0 sin

R s
s0
h

0 1 0
− sin

R s
s0
h 0 cos

R s
s0
h

⎞⎠ (90)

·
µ
�p(s0) +

Z s

s0

�F (s̄)t
0
ds̄

¶
;

the matrix will be denoted by M̂(s). Differentiat-
ing with respect to s , and evaluating at s = s0
allows us to conveniently obtain the rate of change
of the momentum �pl, and we obtain

�p
0
l(s) =

⎡⎣ cM (s)�F (s)t
0

+ cM 0
(s)
³
�p(s) +

R s
s
�F (es)t0des´

⎤⎦
s=s

= �F (s)t
0
+

⎛⎝ 0 0 h(s)
0 0 0

−h(s) 0 0

⎞⎠ �p(s)(91)

Note that the first resulting term depends on the
actual forces and the factor t0 accounts for the
fact that we went to s as an independent vari-
able. The second term is a pseudo force due to
the fact that we are located in a rotating frame.
Indeed, for h = 0, we obtain the conventional re-
sult. We also note in passing that if we were to
allow out-of-plane motion of the reference orbit,
then the matrix cM would depend on two curva-
tures. Unfortunately, in this case an additional
complication arises from the fact that rotations
around different axes don’t generally commute.
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s0

s

dl

ds

r

x

Next we make an observation regarding the
rate of change at which distances are covered at
different positions x. Looking at the picture, we
observe

dl

ds
=

x+ r

r
= 1 + hx

dx

ds
= (1 + hx)

dx

dl
= (1 + hx)

px
ps

(92)

Similarly we obtain

dy

ds
= (1 + hx)

py
ps
, (93)

and for the time of flight:

dt

ds
=

1

v

sµ
dx

ds

¶2
+

µ
dy

ds

¶2
+

µ
dl

ds

¶2
=

=
1

v
(1 + hx)

s
1 +

p2x + p2y
p2s

=

=
1

v
(1 + hx)

p

ps
(94)

where p =
p
p2x + p2y + p2s has been used.

Altogether, we have so far obtained the equa-
tions of motion in local coordinates with s as the
independent variable. From there to the parti-
cle optical variables only a small step is left. We

remind ourselves that the particle optical coordi-
nates are

x a = px/p0
y b = py/p0

l = k(t− t0) δ = (E −E0) /E0

(95)

where p0 is a fixed momentum and E0 and t0 are
energy and time of flight of the reference particle,
and E is the total (kinetic plus potential) energy
of the particle under consideration. In order to
study relativistic effects, it will turn out to be ad-
vantageous to introduce the relativistic measure

η =
E − eV (x, y, s)

mc2
, (96)

the ratio of kinetic to rest mass energy. Obviously,
we have

γ =
1q
1− v2

c2

= 1 + η (97)

and we also have

v

c
=

s
1−

µ
1

1 + η

¶2
=

s
2η + η2

(1 + η)2
=

p
η (2 + η)

1 + η
and (98)

p

mc
=

mvγ

mc
=

v

c
γ =

p
η (2 + η) (99)

As a first step, we express the rate of change of
the particle optical variable l in terms of particle
optical quantities. We obtain

l
0
=

dl

ds

= k
³
t
0 − t

0
0

´
=

k

v
(1 + hx)

p

ps
− kt

0
0

= (1 + hx)
k

p0

p

v

p0
ps
− k

v0

= (1 + hx) (1 + η)m
k

p0

p0
ps
− k

v0

=

½
(1 + hx)

1 + η

1 + η0

p0
ps
− 1
¾

k

v0
(100)
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where we have used the following relations:

t
0
0 =

∙
1

v
(1 + hx)

p0
ps

¸
0

=
1

v0
p

v
= (1 + η) ·m

p0
v0

= (1 + η0) ·m0

Next we obtain for the positions

p0
ps

=
p0p

p2 − p2x − p2y

=

µ
p2

p20
− a2 − b2

¶−1
2

=

=

µ
η (2 + η)

η0 (2 + η0)
· m

2

m2
0

− a2 − b2
¶− 1

2

.

Because we always have �v k �p, it follows that
�v
v
= �p

p
,and altogether

d

ds

µ
px
p0
,
py
p0
,
ps
p0

¶

=
1

p0
�F (s) t

0
+

⎛⎝ 0 0 h
0 0 0
−h 0 0

⎞⎠ �p

p0
=

= ze �E
t
0

p0
+ ze

�v

v
× �B (1 + hx)

p

ps

+h

µ
ps
p0
, 0,−px

p0

¶
=

�E

χe0

µ
1 +

l
0
v0
k

¶
+

�p

p0
×

�B

χm0
(1 + hx)

p0
ps

+h

µ
ps
p0
, 0,−px

p0

¶
, (101)

where the following abbreviations have been used:

χm0 =
p0
ze

(102)

χe0 =
p0v0
ze

(103)

The quantities χm and χe are called the magnetic
and electric rigidity, respectively; they describe
directly to what extent the magnetic and electric
fields influence the geometric motion of the par-
ticles. Continuing from eq. (101) we have

=
�E

χe0
(1 + hx)

1 + η

1 + η0

p0
pz

+

µ
bBz −

pz
p0
By,

pz
p0
Bx − aBz, aBy − bBx

¶
p0
pz

1

χm0
(1 + hx) + h

µ
pz
p0
, 0,−px

p0

¶
.

Finally, we consider the change of the last vari-
able in the particle optical coordinates, δ. Since
it measures the deviations of kinetic and poten-
tial energies, as long as there is conservation of
energy, we have δ0 = 0. This is of course the case
in all time-independent cases; in cavities, the sit-
uation is a little different, but we don’t concern
us here with this case.

Now we merely observe that �p/p0 =
(a, b, ps/p0), and obtain the equations of motion
in particle optical coordinates:

x
0
= a (1 + hx)

p0
ps

(104)

y
0
= b (1 + hx)

p0
ps

(105)

l
0
=

½
(1 + hx)

1 + η

1 + η0

p0
ps
− 1
¾

k

v0
(106)

a
0
=

∙
1 + η

1 + η0

p0
ps

Ex

χe0
+ b

Bz

χm0

p0
ps
− By

χm0

¸
·(107)

· (1 + hx) + h
ps
p0

b
0
=

∙
1 + η

1 + η0

p0
ps

Ey

χe0
+

Bx

χm0
− a

Bz

χm0

p0
ps

¸
·(108)

· (1 + hx) (109)

δ
0
= 0 (110)

where the abbreviations

η =
E − eV (x, y)

mc2
and (111)
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p0
ps

=

µ
η (2 + η)

η0 (2 + η0)
· m

2

m2
0

− a2 − b2
¶− 1

2

(112)

have been used.
A careful analysis of the equations of motion

reveals that indeed if all the particle optical coor-
dinates are small, so are their derivatives defined
through the equations of motion; indeed, the sys-
tem is weakly nonlinear. Furthermore, one can
show that the system is even Hamiltonian; but
for lack of time, we do not concern ourselves here
with the development of the Hamiltonian func-
tion.

VII. The Linearization of the
Equations of Motion

In order to develop a matrix theory of parti-
cle optics similar to the Gaussian theory in glass
optics, we have to linearize the equations of mo-
tion. This is procedure is rather similar to other
linearizations in Physics, in particular it is very
similar to the study of so-called ”small oscilla-
tions” in Mechanics. Since the solutions of linear
systems depend linearly on the initial conditions,
indeed the resulting transfer maps will be linear
as needed.

We begin the actual process of linearization
with the linearization of the fields, which corre-
sponds to quadratic potentials. In the electric
case, let us assume that there is no potential on
axis, i.e. a0,0 = 0, and that in the midplane, we
have

Ex = −Ex0 · (1 + nex) . (113)

Because of the recursion relation for fields, we ob-
tain an out-of-plane expansion of

Ey = Ex0 · (h+ ne)y (114)

as well as a potential

V (x, y) = Ex0 · x+
1

2
Ex0(nex

2 − (h+ ne) y
2);

(115)

which is chosen in such a way as to vanish on
the reference orbit. In the magnetic case, let the
midplane field be given by

By = By0 · (1 + nbx); (116)

due to the recursion relation, we must then have

Bx = By0 · nby. (117)

Before we even discuss linearization, let us con-
sider the ”zeroth order” of the motion: if the sys-
tem is supposed to be origin preserving, then we
must have from the equations of motion for a0 that

Ex

χe0
− By

χm0
= h, (118)

which in a natural and expected way couples the
constant parts of the fields with the curvature of
the reference orbit. Now we begin our process of
linearization. It is easy to see that

x0 = a (119)

y0 = b. (120)

We also obtain

η

η0
=

m0

m
· (1 + δ − SEx0x)

and after more complicated expansions

1 + η

1 + η0
= 1 +

η0
1 + η0

δ − ze

(1 + η0)mc2
Ex0x

2 + η

2 + η0
= 1 +

η0
2 + η0

δ − ze

(2 + η0)mc2
Ex0x

Similarly, we obtain

pz
p0
= 1 +

1 + η0
2 + η0

δ

−1
2
xEx0

µ
S+ ze

(2 + η0)mc2

¶
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where the abbreviation S = ze
K0
= ze

mc2η0
has been

used. After lengthy similar arguments, we also
conclude

l
0
=1

(
hx− 1

(1+η0)(2+η0)
δ

+Ex0xS 1
(1+η0)(2+η0)

)
k

v0
(121)

as well as

a0 =

½
h
1 + η0
2 + η0

− Ex0

χe0

1

(1 + η0) (2 + η0)

¾
δ −

−x

⎡⎢⎣ h2 − Ex0
χe0

ne +
By0

χm0
nB

−Ex0
χe0

Ex0S 2+2η0+η20
(1+η0)(2+η0)

+By0

χm0
Ex0S 1+η02+η0

⎤⎥⎦ (122)

b
0
= −Ex0

χe0
(h+ ne)y +

By0

χm0
nby (123)

Now that the equations of motion have been lin-
earized, they have to be studied for a variety of
different cases. We begin with the simplest case:

A. The Drift

In this case, the linearized equations of mo-
tion have the form

x
0
= a

y
0
= b

a
0
= 0

b
0
= 0

l
0
= − k

v0

1

(1 + η0) (2 + η0)
δ

δ0 = 0 (124)

where of course only the last equation is of any
real interest. These equations are trivial to inte-
grate, and we obtain

xf = xi + ail

yf = yi + bil

lf = − k

v0

l

(1 + η0) (2 + η0)
δ + li

af = ai

bf = bi

δf = δi

which can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎝
xf
af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 l 0 0 0 0
0 1 0 0 0 0
0 0 1 l 0 0
0 0 0 1 0 0
0 0 0 0 1 D
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi
ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠
where D = − k

v0
l

(1+η0)(2+η0)
has been used.

B. The Electric Quadrupole with-
out Fringe Field

More interesting is the case of the electric
quadrupole. To remind ourselves, we have

V = M2,2 cos (2φ) r
2 =M2,2

¡
x2 − y2

¢
and Ex = −2M2,2x , Ey = 2M2,2y

The equations of motion have the form

x
0
= a

y
0
= b

a
0
= −x2M2,2

χe0

b
0
= y

2M2,2

χe0

l
0
= − k

v0

1

(1 + η0) (2 + η0)
δ

δ0 = 0 (125)

Apparently we have sine-cosine solutions in
the horizontal plane, and sinh-cosh solutions in
the vertical plane. Calling ω =

p
2M2,2/χe0, we

obtain as the solution
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xf = xi cosωL+ ai
sinωL
ω

af = −ωxi sinωL+ ai cosωL
yf = yi coshωL+ bi

sinhωL
ω

bf = ωyi sinhωL+ bi coshωL
lf = − k

v0
1

(1+η0)(2+η0)
δL+ li

δf = δi

.

Using the abbreviations cx = cos(ωL), sx =
sin(ωL)/ω, cy = cosh(ωL), sy = sinh(ωL)/ω as
well as D = − k

v0
l

(1+η0)(2+η0)
, this can be written

in matrix form as⎛⎜⎜⎜⎜⎜⎜⎝
xf
af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
cx sx 0 0 0 0
c0x s0x 0 0 0 0
0 0 cy sy 0 0
0 0 c0y s0y 0 0
0 0 0 0 1 D
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi
ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠
(126)

Observe that, as in the case of glass optics,
the determinant is unity. Furthermore, note that
if M2,2 < 0, ω is imaginary. In this case, the x-
and y-planes exchange their roles, the quadrupole
becomes focusing in the vertical direction and de-
focusing in the horizontal direction.

It is also worthwhile to briefly touch the case
of fringe fields. In this case,M2,2 changes as func-
tion of s. The resulting ODE is still linear, which
entails that the result can be written in matrix
form, but in most cases is impossible to solve it
analytically.

C. The Magnetic Quadrupole
without Fringe Field

In the case of the magnetic quadrupole, we
have

V = −2M2,2x · y
Bx = 2M2,2y

By = 2M2,2x

which results in the linear equations

x
0
= a

y
0
= b

a
0
= −2M2,2

χm0
x

b
0
=

2M2,2

χm0
y

l
0
= − k

v0

1

(1 + η0) (2 + η0)
δ

δ0 = 0 (127)

Similar to before, we introduce ω =p
2M2,2/χm0,and the resulting transfer matrix is

the same as in the case of the electric quadrupole.

D. The Linear Magnetic Dipole

The next particle optical element we want to
consider is the magnetic dipole, consisting of con-
stant magnetic field in the y-direction. In terms
of the quantities describing the linearized fields,
we have

By0 = const, Ex0 = 0

ne = me = nB = mB = 0

Reminding ourselves about magnet design, such a
field can be obtained very schematically with the
following arrangement:

Let us now consider the equations of motion;
we obtain

x
0
= a

y0 = b

a
0
= −xh2 + δh

1 + η0
2 + η0

b
0
= 0

l
0
=

k

v0

∙
hx− 1

(1 + η0) (2 + η0)
δ

¸
δ0 = 0 (128)

35



constant field

coil

Figure 2:

First we observe that if we choose h = 0, we ob-
tain a

0
= 0, and the same situation as in the case

of a drift. But even for the case of h 6= 0, the mo-
tion of the y-direction behaves simply like a drift,
and we always have

bf = bi

yf = yi + biL

where L is the arclength of the dipole.
Next we observe that as always, δ stays con-

stant, and hence in the equation for a0 plays the
role of a parameter, making the differential equa-
tion inhomogeneous.. Finally we observe that
since l does not couple into the horizontal or ver-
tical motion, we can solve the equation for l after
the horizontal motion is analyzed by a mere inte-
gration.

In order to solve the horizontal part of the
motion, we first solve the homogenous part, which
has the form

x0 = a

a0 = −x · h2

and setting ω = h, we obtain as a solution

xf = x0 cosωL+
1
ω
a0 sinωL

= x0 cosφ+R0a0 sinφ
af = −ωx0 sinωL+ a0 cosωL
= − 1

R0
x0 sinφ+ a0 cosφ

where we have used that R0 = 1/h and L/R0 = φ.
Altogether, we have a behavior not much different
from a focusing quadrupole. In order to treat the
inhomogeneity, we perform a so-called ”Variation
of the Parameters”, that is we make an Ansatz of
the form½

x (s) = x0 (s) cosφ+R0a0 (s) sinφ
a (s) = − 1

R0
x0 (s) sinφ+ a0 (s) cosφ

,

where now the original ”parameters” x̄0 etc. are
viewed as functions of s. Inserting into the ODE,
we obtain the following condition:

x
0
0 (s) cosωs+

1

ω
a
0
0 (s) sinωs = 0

−ωx00 sinωs+ a
0
0 cosωs = κ,

where κ = δh1+η0
2+η0

. Rewriting in matrix form, this
readsµ

cosωs 1
ω
sinωs

−ω sinωs cosωs

¶µ
x
0
0

a
0
0

¶
=

µ
0
κ

¶
.

Multiplying with the inverse matrix and integrat-
ing, we obtain

x
0
0 =

µZ s

0

µ
− 1
ω
sinωs

¶
κds

¶
+ x0

=
1

ω2
(cosωs− 1)κ + x0

a
0
0 =

µZ s

0

cosωs κds
¶
+ a0

=
1

ω
sinωsκ + a0

So the complete solution of the inhomogeneous
part has the form

x (s) = x0 (s) cosφ+R0a0 (s) sinφ

=
h κ
ω2
(cosωs− 1) + x0

i
cosωs

+
1

ω

hκ
ω
sinωs+ a0

i
sinωs

= x0 cosφ+
1

ω
a0 sinφ

+
κ
ω2
(1− cosφ)
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xf = x0 cosφ+R0a0 sinφ

+R0 (1− cosφ)
1 + η0
2 + η0

δ

af = − 1

R0
x0 sinφ+ a0 cosφ

+sinφ
1 + η0
2 + η0

δ

Finally we have to study the case of the time of
flight part, which as we said before can be ob-
tained by mere integration. We have

lf =
k

v0

Z s

0

½
hx

− 1
(1+η0)(2+η0)

δ

¾
ds+ l0

=
k

v0

Z s

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
R0
x0 cos

s
R0

+a0 sin
s
R0

+
³
1− cos s

R0

´
1+η0
2+η0

δ

− 1
(1+η0)(2+η0)

δ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ds+ l0

=
k

v0

⎡⎢⎢⎢⎣
x0 sin

s
R0

−R0a0 cos s
R0

−R0 sin s
R0

1+η0
2+η0

δ

+1+η0
2+η0

δs− 1
(1+η0)(2+η0)

δs

⎤⎥⎥⎥⎦
s

0

+ l0

=
k

v0

⎡⎢⎢⎢⎣
x0 sin

s
R0

−R0a0
³
cos s

R0
− 1
´

−R0 sin s
R0

1+η0
2+η0

δ

+1+η0
2+η0

δs− 1
(1+η0)(2+η0)

δs

⎤⎥⎥⎥⎦+ l0

=
k

v0

⎡⎢⎢⎣
x0 sinφ

−R0a0 (cosφ− 1)
−R0 sinφ1+η02+η0

δ

+1+η0
2+η0

δs− 1
(1+η0)(2+η0)

δs

⎤⎥⎥⎦+ l0

As a result, we see that all the final coordinates
indeed depend on all initial coordinates in a linear
fashion, and hence the relationship can be written
in terms of a transfer matrix. The general shape

of this matrix is now⎛⎜⎜⎜⎜⎜⎜⎝
xf
af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
cx sx 0 0 0 ∗
c0x s0x 0 0 0 ∗
0 0 1 L 0 0
0 0 0 1 0 0
∗ ∗ 0 0 1 ∗
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi
ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠
(129)

where we have not explicitly filled in the ”*” terms
because of space restrictions.

E. The Inhomogeneous Sector

In the case of an inhomogeneous sector, there
is a magnetic field that is constant in s-direction,
but not constant in the x-direction; it has the
shape

By = By0

µ
1 + n

x

R0

¶
(130)

From the recursion relations for the fields, we infer
that the corresponding horizontal field is

Bx = By0n
y

R0
(131)

In general terms, such a field is obtained by chang-
ing the distance between what generates the fields
(coils or iron) as a function of x,similar to what
is shown below for the case of n < 0.

x

weaker field

37



The linearized equation of motion has the
form:

x
0
= a

a
0
= −x

µ
h2 +

By0

R0χm
n

¶
+ δh

1 + η0
2 + η0

y
0
= b

b
0
=

By0

R0χm
ny

l
0
=

k

v0

½
hx− 1

(1 + η0) (2 + η0)
δ

¾
δ
0
= 0 (132)

We observe that the horizontal motion is simi-
lar to the case of the homogeneous dipole, except
that the strength of focusing now also depends
on n, the field inhomogeneity. Different from the
homogeneous dipole, there is now an effect in the
vertical direction, which can be either focusing or
defocusing, depending on the sign of n.

The solution of these equations of motion
proceeds in the same way as before, first solve
the homogeneous system, then address the inho-
mogeneity arising from δ via variation of parame-
ters, and finally solve for l by a mere integration.
In horizontal and vertical directions, the homo-
geneous solution corresponds to harmonic oscilla-
tors with frequencies

ωx = h
√
1 + n;ωy = h

√
−n. (133)

An interesting case occurs for n = −1/2, in which
case the magnet focuses x and y completely iden-
tically and represents a nice equivalent of the glass
lens!

The remainder of the derivation is tedious
algebra, and we will not list the details here.

F. The Inhomogeneous Electric
Deflector

Rather commonly known is the motion of a
particle in an electric capacitor; neglecting fringe
fields, it follows a parabola as shown in the figure.

capacitor

parabola s-dependent x

For particle optical purposes, such an
arrangement is not particularly suitable for two
reasons: first of all, the reference orbit has a cur-
vature that depends on s, which makes the differ-
ential equations non-autonomous; and secondly,
the potential along the reference orbit changes
with s, which complicates the dynamics. Both
of these problems do not appear if instead of a
straight capacitor, one chooses a curved one in
such a way that the reference orbit is concentric
with the plates, as shown in the figure.

concentric

R 0

s-independent

So far, no assumptions have been made about
the vertical shapes of the electrodes, and in fact a
variety of choices exist. Two common situations
are the cylindrical plates and the spherical plates,
as shown below.

beam

R0

Nested Cylinders

+ -
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R0

In the case of the of the cylindrical field, we
have from Gauss’ law that E ∼ 1/R, which im-
plies the expansion

Ex = −Ex0

R0
R0 + x

=1 −Ex0

µ
1− x

R0

¶
(134)

and hence corresponds to n = −1̇ (or ne = −h).
In the spherical case, we have E ∼ 1/R2 and thus

Ex0 = −Ex0

µ
R0

R0 + x

¶2
=1 −Ex0

µ
1− 2 x

R0

¶
(135)

and n = −2 (or ne = −2h). The solution of
the equations of motion is conceptually identical
to the case of the inhomogeneous magnet, but
practically even more involved, and we forgo it
here for reasons of space.

VIII. Elementary Particle Optical
Devices and Their Maps

A. The Map and its Aberrations

Recall that the transfer map of an optical sys-
tem relates final coordinates to initial coordinates
via

�zf =M(�zi) (136)

where �z = (x, a, y, b, l, δ). In the previous sections,
we were concerned mostly with the linearized part
of the map, which describes the major part of the
motion and which can be described by transfer
matrices. The matrix elements were denoted as
(x, a) etc.

In order to study the effects of the motion
very precisely, it is necessary to also consider
higher order or nonlinear effects. For this purpose
we Taylor expand the map (in a rigorous sense the
question whether the map can actually be Taylor
expanded is rather nontrivial, but we ignore this
here), and use names for the coefficients similar
to what we had for the linear motion. We write

xf =
X¡

x|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ

af =
X¡

a|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ

yf =
X¡

y|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ

bf =
X¡

b|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ

lf =
X¡

l|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ

δf =
X¡

δ|xixaiayiybiblilδiδ
¢
xixaiayiybiblilδiδ(137)

where the sums go over all six-tuples
(ix, ia, iy, ib, il, iδ); for convenience, they are
usually sorted by total order. The Taylor coeffi-
cients belonging to terms of orders two or higher
are usually called aberrations, as they describe
corrections to the linear part of the map that
are usually small if the phase space variables are
small.

B. Symmetries of the Map

In most cases, the freedom of the aberration
coefficients is severely restricted by the presence
of a variety of symmetries. First, in many cases
the motion of one of the variables does not de-
pend on the values of some other variables. For
example, if the motion is time independent, we
have

(∗|xixaiayiybiblilδiδ) = 0 if il 6= 0. (138)

Furthermore, in this case we know that the kinetic
plus potential energy of the particle is conserved,
and we have that

(δ|...) = 0 except (δ|δ) = 1. (139)
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1. Horizontal Midplane Symmetry

This symmetry is perhaps the most impor-
tant symmetry in Beam Physics, as it affects al-
most all devices: quadrupoles, higher multipoles,
bending elements, cyclotrons, glass lenses, etc
have it, and so do all their combinations. It says
that motion is always symmetric around the mid-
plane (the x − z plane), and thus behaves like
illustrated in the picture:

s

y

So for any orbit, going to the mirror image
along the x − z plane gives another valid orbit.
Considering the phase space vector (x, a, y, b, l, δ),
the mirror image is (x, a,−y,−b, l, δ). Thus flip-
ping the signs of yi, bi simultaneously flips the
signs of yf , bf , but leaves xf , af , lf , δf intact.
Flipping sign of yi, bi simultaneously produces a
sign of (−1)iy+ib in each monomial. So iy+ib must
be odd for yf , bf and iy + ib must be even for all
others. So we obtain¡

x|xixaiayiybiblilδiδ
¢
= 0 for iy + ib odd¡

a|xixaiayiybiblilδiδ
¢
= 0 for iy + ib odd¡

y|xixaiayiybiblilδiδ
¢
= 0 for iy + ib even¡

b|xixaiayiybiblilδiδ
¢
= 0 for iy + ib even¡

l|xixaiayiybiblilδiδ
¢
= 0 for iy + ib odd¡

δ|xixaiayiybiblilδiδ
¢
= 0 for iy + ib odd(140)

For the first order matrix, this requires the special
form

M =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
∗ ∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ (141)

which is of compatible with what we saw before
for the transfer matrices we encountered. Alto-
gether, the symmetry entails that to any given
order, roughly half of all aberrations are gone.

2. Double Midplane Symmetry

Several devices have a midplane symmetry
not only around the horizontal plane, but also
around a vertical plane. This is the case for all
electric cylindrically symmetric devices, as well as
quadrupoles, octupoles, and in general 4k poles.
In this case, in addition to the requirements we
just had, we obtain a second set in which the roles
of x, a and y, b are interchanged. In this case we
obtain

(x|...) = 0 for iy + ib odd or ix + ia even

(a|...) = 0 for iy + ib odd or ix + ia even

(y|...) = 0 for iy + ib even or ix + ia odd

(b|...) = 0 for iy + ib even or ix + ia odd

(l|...) = 0 for iy + ib odd or ix + ia even

(δ|...) = 0 for iy + ib odd or ix + ia even(142)

and altogether, about 3/4 of all matrix elements
vanish. To first order, the matrix must have the
special form
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M =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ (143)

which is what we observed in the case of the drift
and the electric and magnetic quadrupoles.

3. Rotational Symmetry

One special case of the double midplane sym-
metry that we just discussed is the full rotational
symmetry that round lenses satisfy. In this case
there is a symmetry going beyond what double
midplane symmetry requires, the map has to be
invariant under a rotation in the x− y plane. Let
the rotation angle be φ and denote cosφ by c and
cosφ by s. Then the matrix describing such a ro-
tation of the particle optical variables is

R =

⎛⎜⎜⎜⎜⎜⎜⎝
c 0 s 0 0 0
0 c 0 s 0 0
−s 0 c 0 0 0
0 −s 0 c 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (144)

and we must have that the transfer map satisfies

M ◦R = R ◦M (145)

In the variables we are currently using, the study
of the influence of the rotation on the map is
somewhat cumbersome, and for this purpose it
is actually better to choose complex coordinates

z = x+ iy

w = a+ ib (146)

as well as their complex conjugates

z̄ = x− iy

w̄ = a− ib. (147)

In these complex variables, the map R has the
simple diagonal form

R =

⎛⎜⎜⎜⎜⎜⎜⎝
eiφ 0 0 0 0 0
0 eiφ 0 0 0 0
0 0 e−iφ 0 0 0
0 0 0 e−iφ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (148)

and its effect in equation (145) is easy to study.
It turns out that the in the map, only those terms
that have the form

zf = zi · fz(zz̄, ww̄)
wf = wi · fw(zz̄, ww̄) (149)

are allowed to remain. For the expert reader, we
note that this situation is remarkably similar to
what happens in the theory of normal forms of
repetitive motion.

4. Symplectic Symmetry

Another important symmetry of the motion
is due to the fact that the motion is indeed ob-
tained by solution of a Hamiltonian problem. In
this case, one can show that the Jacobian M̃ of
the transfer mapM, i.e. the matrix

M̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂M1

∂z1
∂M1

∂z2
∂M1

∂z3
∂M1

∂z4
∂M1

∂z5
∂M1

∂z6
∂M2

∂z1

∂M2

∂z2

∂M2

∂z3

∂M2

∂z4

∂M2

∂z5

∂M2

∂z6
∂M3

∂z1
∂M3

∂z2
∂M3

∂z3
∂M3

∂z4
∂M3

∂z5
∂M3

∂z6
∂M4

∂z1
∂M4

∂z2
∂M4

∂z3
∂M4

∂z4
∂M4

∂z5
∂M4

∂z6
∂M5

∂z1

∂M5

∂z2

∂M5

∂z3

∂M5

∂z4

∂M5

∂z5

∂M5

∂z6
∂M6

∂z1
∂M6

∂z2
∂M6

∂z3
∂M6

∂z4
∂M6

∂z5
∂M6

∂z6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(150)

has to satisfy the condition

M̃ · Ĵ · M̃ t = Ĵ , (151)

41



where Ĵ is the totally antisymmetric matrix

Ĵ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (152)

The proof of this so-called condition of symplec-
ticity certainly goes beyond these lectures. But
we can appreciate that the symplectic condition,
which mixes in a very defined way the terms
∂Mi/∂zj that are themselves power series, entails
a large variety of nonlinear restrictions between
the aberrations.

The detailed study of these is cumbersome
and can be found in the literature (for example
H. Wollnik and M. Berz, NIM238 (1985) p.127),
and we want to restrict our attention to what hap-
pens in the linear case. Considering the constant
part of the symplectic condition (151), we observe
that what contributes via the Jacobian is just the
transfer map. Assuming midplane symmetry and
no acceleration, plugging into the symplectic con-
dition yields the conditions

(x|x) · (a|a)− (x|a) · (a|x) = 1(153)

(y|y) · (b|b)− (b|y) · (y|b) = 1(154)

(l|x) · 1 + (x|x) · (a|δ)− (a|x) · (x|δ) = 0(155)

(l|a) · 1 + (x|a) · (a|δ)− (a|a) · (x|δ) = 0.(156)

The first two of these are old friends and describe
the fact that the volume of phase space is pre-
served under the linear transformations generated
by particle optical elements. The third and fourth
conditions, however, represent an amazing con-
nection between longitudinal and dispersive ef-
fects.

C. Imaging Devices

In the following sections, we want to discuss
what specifically has to be done to a map of a sys-
tem to make the system useful for a specific task.

In many cases, this will require certain matrix ele-
ments to vanish, or sometimes to assume specific
values. The most important device is probably
the imaging device, in which final positions are
not allowed to depend on initial angles, as shown
schematically in the picture.

Imaging

In the case of particle optical systems, this
requires

(x|a) = 0, (157)

(y|b) = 0. (158)

On the other hand, the final angles af and bf are
unimportant since it doesn’t matter at what angle
the rays strike at the image position; so all terms
of the form (a|...) or (b|...) are insignificant. Ad-
ditional requirements usually exist for the various
sub-classes of imaging systems.

Note that one important application of beam
physics that does indeed produce images of some
sort, namely the X-ray machine, is actually not an
imaging device: X-rays cannot be bent, and there-
fore it is impossible to achieve (x|a) = (y|b) = 0;
in fact, if l is the length of the device we will have
(x|a) = (y|b) = l. So X-ray systems should be
short from object to ”image”, and they should
have a source that produces beams with a very
small a and b. Anything else increases the fuzzi-
ness that X-ray pictures usually exhibit.

1. The Television Tube

As far as practical use, impact on society, and
revenues is concerned, sadly enough the TV tube
(and more generally and not so sadly enough, the
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CRT tube) is the most important application of
particle optics. In this case, for each color an
electron beam is deflected vertically and horizon-
tally by two simple magnetic deflectors in order
to sweep over the screen area, and its intensity is
adjusted according to the color saturation at the
respective point.

At any given point on the screen, the result-
ing spot should not be wider than about the dis-
tance between two pixels, so whatever size the
beam had initially should not be amplified very
much; so

(x|x) and (y|y)

should not be large.
The requirements for aberrations are mostly

somewhat benign as the beam phase space volume
is small.

2. The Camera, the Electron Microscope

The purpose of a camera and an electron
microscope is to create an image of an object
through which the rays is moving. So the quanti-
ties

(x|x) and (y|y) are magnifications,

and in most cases it is desirable to have them
equal. The electron microscope is just a special
case in which both of these are made to be very
large.

If a true image is desired, it is important that
the relationship between final and initial coor-
dinates be really linear, which requires that all
higher order position dependent matrix elements
vanish, and so

(x|xx) = 0, (y|yy) = 0, (x|xxx) = 0, ....

In reality, of course, it is sometimes difficult
to do this to higher orders, and some distortions
prevail. In the case of an electron microscope, this

is often not detrimental as one can retroactively
correct the effects by calculation. The effects that
appear usually have the consequence that rectan-
gles are distorted into either the shape of pincush-
ions or into the shape of barrels; these effects are
due to

(x|xyy) and (y|yxx)

which entail that rays that simultaneously
have x and y coordinates are either pushed out
from the center (pincushion) or pulled in (barrel).
Higher order terms in x and y produce similar ef-
fects.

There should no effect of energy on position,
so

(x|δ) = 0 and (y|δ) = 0

should be maintained. Similarly, all higher
order aberrations involving δ should vanish; if
this is not the case, some color-dependent blur-
ring may occur, in particular for larger values of
x and y, an effect that can be easily observed in
the case of less expensive binoculars.

There should also be no effects of position
on initial angles to higher order; so it is necessary
that

(x|aiabib) = (y|aiabib) = 0, (159)

and since often the range of accepted angles cor-
responding to a and b is rather large, to correct
these terms is often very important. If any of
them prevail, they will entail a color-independent
fuzziness; in case the order of the coordinates a
and b is even, the fuzz will be oriented towards
one side like the coma of a comet; if the powers
are odd, it will lead to a uniformly distributed
fuzziness.

Similarly, all aberrations involving positions
and angles simultaneously should vanish, and
hence it is necessary to have

(x|xixyiyaiabib) = (y|xixyiyaiabib) = 0; (160)
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if any of them prevail, they will entail a position-
dependent fuzziness that becomes stronger with
an increase of the positions x and y.

Interestingly enough, all higher order aber-
rations depending on a and b only linearly can
be corrected by a re-shaping of the focal plane;
in fact, (x|xa) etc produce a tilt of the image,
(x|xxa) etc produce a curvature of the image. The
image shows how the matrix element (x|xxa) can
be corrected by shaping the image position par-
abolically:

(x,x2a)
z

xx 2 curve

At any given position, due to the matrix ele-
ment (x|xxa), any ray with a given a is moved up
or down in proportion to a, where the amount of
deflection depends quadratically on x; so the rays
arrive at the x plane as shown. However, tracing
the rays backwards shows that they in fact all in-
tersect before the plane, and the point where this
happens depends quadratically on x. In similar
ways, (x|x4a) etc can be corrected.

3. The Spectrograph

As we learned before, the purpose of the
spectrograph is to translate energy information
into position information, and in order to have
high resolution, the position should not depend
on anything else if possible. Rays originate from

a source, travel through the spectrograph, and fi-
nally reach the screen, as shown in the picture.

source
spectrograph

screen

It is possible to measure energies in terms of
final positions by making

(x|δ) large. (161)

In practice this requires the use of at least one
bending element, because all other elements have
vanishing (x|δ). The final position should not de-
pend on anything else besides δ, and since it is
important to be able to accept rays covering a
wide range of angles, it is necessary to have

(x|a) = (y|b) = 0. (162)

So the spot size is limited by (x|x) = 1/(a|a),
which is usually kept small, and the size of the
object, the x-size of which is usually kept in the
range of fractions of mm.

Any contribution to the final position should
be due to energy, and so aberrations depending
on initial angle should be avoided; so if possible,
we want

(x|aa) = (x|aaa) = 0
(x|bb) = (x|abb) = 0

The aberrations involving also x-positions
are less significant as positions are kept small.
The ones involving also y positions are more im-
portant as y is not necessarily kept small; but if
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(y|y) is kept large enough, particles with signifi-
cant initial y reach the focal plane with significant
final y; the interplay of (y|y) and (x|yy) then leads
to a parabolic shape of the resulting image, but
the sharpness of the parabola, which determines
the resolution, is unaffected by (x|yy).

It is also important to consider aberrations
involving energy. Of these, the terms depending
only on energy like

(x|δiδ) (163)

do not necessarily have to be corrected as long as
they are known, as they just turn the relationship
of final x and initial δ into a nonlinear one, which
still allows an accurate measurement of δ. The
most important aberrations are usually those that
involve initial angles and energies simultaneously,
as both of these can be large. Of these, the lowest
order aberration (x|aδ) can be corrected by just
tilting the focal plane: the final x of a particle,
which depends mostly on δ, is moved up or down
linearly depending on the value of a. As shown in
the figure, similar to before, all these rays with
different values of a go through a common point
at a distance before or after the x plane, where
the effect of (x|aδ) does not manifest itself.

x

z

δ1

δ2

In a similar way, spectrographs can also be
used to measure masses of particles, and all previ-
ous arguments stay valid if the energy deviation
δ is replaced by the mass deviation δm. If mass

resolution is to be achieved to very high preci-
sion and the initial energy is not uniform, then
in addition to the above requirements, it is also
important that the final position does not depend
on δ; this requires that

(x|δ) = 0 (164)

while of course at the same time trying to have

(x|δm) large. (165)

The simultaneous satisfaction of these conditions
is not possible using only magnetic devices; for
low energies, it is usually achieved by combining
magnetic and electric deflectors.

4. Telescopic Systems

Telescopic systems in particle optics are not
as important as in the case of glass optics, as there
is no direct equivalent to the human eye that di-
rectly uses angular information which may benefit
from magnification.

D. Point-to-Parallel and Parallel-
to-Point

There are several situations which require
these systems; perhaps the most important is the
transport of a beam over a long distance without
blowing up its size very much.

1. The Beam Expander, the SDI Gun

If a beam travels over a long distance, its fi-
nal size is governed by the angular divergence in
the beam, and so it is necessary to make this an-
gular divergence as small as possible. Since phase
space volume is preserved, this seemingly para-
doxically requires making the initial width of the
beam large.

If the beam now originates from a source of
small size, but under a variety of angles, than a
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point-to-parallel system will be able to turn this
into a beam with rather small final angles, since
in a telescopic system,

(a|a) = 0 (166)

and (a|x) is of reduced importance because of the
initially small size. Depending on the emittance
of the beam, aberrations are often also important,
and we have to make sure that

(a|aa), (a|aaa), (a|abb) etc vanish

or are at least small enough.
Perhaps the most famous point-to-parallel

system (or depending on your viewpoint the most
infamous) is the "Star Wars" or SDI device that
was supposed to shoot down incoming missiles
in space. In this case, the beam has to travel
a very long distance (from the cannon to the mis-
sile) without too much increase in size, and this
is best achieved by initially making it wide with
a point-to-parallel system.

But also in regular applications, these sys-
tems are useful as they conveniently allow trans-
port over larger distances.

2. The Final Focusing Section

Perhaps the opposite of the point-to-parallel
system is the parallel-to-point system, in which an
initially nearly parallel beam is brought down to
a small point. This is indeed of prime importance
in the case of the collider, where the number of
collisions of the counter-rotating beams increases
as the radii of the beams decrease.

But since the collision point is usually deep
inside a detector, the necessary large angle re-
quires a rather wide beam in the last focusing
element, which because of its width at this point
is nearly parallel there.

So the position at the final focus is not al-
lowed to depend on the large position before the

last focusing element, and so it is necessary to
have

(x|x) = (y|y) = 0 (167)

and hence a parallel-to-point system. Depending
on the needed size of the focal point (which can be
less than a micrometer), it is also very important
to correct the position-dependent aberrations, in
particular we must have that

(x, xx), (x, xxx), (x, xyy) etc vanish.

E. The Periodic Transport

In the case of the periodic transport over long
distances, the desire is not so much to give a spe-
cial shape to the beam as the beam exits, but even
much more simply, to just contain the beam. This
is of key importance in all devices in which the
beam repeatedly passes through the same (or a
very similar) structure. We may wonder whether
this again translates into the requirement that a
certain matrix element vanish, but as we shall see,
this is not quite the case.

Actually it is rather easy to formulate a nec-
essary condition on the linear matrix: it is not al-
lowed to have any eigenvalue of magnitude greater
than unity. If the eigenvalue is real, the argument
is simple: if this were the case, any particle that
has its coordinates lined up with the correspond-
ing real eigenvector will after one period end up on
the same line, but all its coordinates would have
increased by a factor equal to the eigenvalue.

If on the other hand the eigenvalue is com-
plex, there is another eigenvalue that is conjugate
and hence has the same magnitude. Similar to the
eigenvalues, also the eigenvectors are conjugates
of each other. Now simply consider the sum of
the two eigenvectors, which is real; sending this
sum through the matrix multiplies the first eigen-
vector by the first eigenvalue, and the second one
by the conjugate, resulting in a sum that is again
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real and increased in size by the magnitudes of
the eigenvalues.

In both cases, coordinates grow exponen-
tially in time, and so eigenvalues that are even
only a tiny amount above unity in magnitude are
detrimental. Of course the nonlinear effects also
influence the motion and break the purely expo-
nential pattern, but all experience shows that it
is not possible to correct linear instability with
nonlinear means; in practice, things usually work
quite to the contrary!

Because of emittance preservation, the fact
that eigenvalues greater than unity are prohibited
means that in fact, all eigenvalues have to have
unit magnitude. Of these, the cases+1 and −1
are to be excluded too, since even the slightest
imperfection in the machine may otherwise lead
to instability. Altogether, in a periodic system,
the eigenvalues must all be complex and of unit
magnitude.

It is particularly interesting to study the spe-
cial case of a matrix with midplane symmetry. In
this case, the x and y motion decouple and can be
described by individual matrices. We obtain for
the eigenvalues for the two-by-two x submatrix,
noting that the y submatrix is treated similarly:

0 =
¯̄̄cM − λbI ¯̄̄

=

¯̄̄̄
(x|x)− λ (x|a)
(a|x) (a|a)− λ

¯̄̄̄
= (x|x) (a|a)− (x|a) (a|x)| {z }

1

−λ [(x|x) + (a|a)] + λ2

and so

λ1,2 =
[(x|x) + (a|a)]±

q
[(x|x) + (a|a)]2 − 4
2

=
trcM
2
±

vuutÃtrcM
2

!2
− 1 (168)

Hence to have complex eigenvalues requires the
very simple condition

−2 < tr(M) < 2 (169)

A quick check of the four cases shows that
this excludes the point-to-point case and the
parallel-to-parallel case, as in both of these, the
trace just equals two or exceeds two. The parallel-
to-point or point-to-parallel case each have one
element on the diagonal vanish, so they are per-
missible if the remaining diagonal matrix element
is less than two in magnitude.

We also verify that for trcM 6= 2 , the eigen-
values form a reciprocal pair, i.e. λ1λ2 = 1. Let
us quickly re-visit the case

¯̄̄
trcM ¯̄̄ > 2, for which

the eigenvalues are real, and hence one of them
is greater than unity, and as we had already con-
cluded, the motion is unstable. Choosing a new
basis, the so-called normal form basis, along the
real eigenvectors �v1, �v2, we have that the repeti-
tive motion asymptotically approaches the eigen-
vector �v1 with eigenvalue greater than unity and
becomes larger and larger.

v2

v1

A detailed analysis shows that the motion
indeed follows hyperbolas; note that λ1λ2 = 1,
and that |λ1| > 1 > |λ2| . Suppose we have a

47



general vector expressed in the basis (�v1, �v2) as
shown in the figure

a

x

a

x

x

v2

v1

α

β

whose coordinates are now α and β, and thus

�x ≡
µ

x
a

¶
= α�v1 + β�v2

Applying the transfer matrix, we have

cM�x = αcM�v1 + βcM�v2

= αλ1�v1 + βλ2�v2

In normal form coordinates, the action of the
transfer map is thus given by

µ
αλ1
βλ2

¶
=

µ
λ1 0
0 λ2

¶µ
α
β

¶
,

but since λ2 = 1/λ1, the product of the coordi-
nates stays constant, characteristic of the motion
along a hyperbola. In Cartesian coordinates, the
motion looks more complicated as the hyperbolic
structure is deformed:

a v2

v1

x

For practical purposes, this case is unstable
and hence useless.

Let us now consider the case
¯̄̄
trcM ¯̄̄ < 2 in

more detail. We have the complex eigenvalues
that satisfy

λ2 = λ1 and λ2 = λ−11 . (170)

So in the complex plane, λ1 and λ2 lie on a circle
and form conjugate pairs, as shown in the figure:

complex  plane

v1

v2

The eigenvalues can hence be written as

λ1,2 = e±iμ, (171)
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where μ is called the tune of the system. The
eigenvectors �v1,2 belonging to λ1,2 also form con-
jugate pairs, since

cM�v2 = cM�v2 = λ2�v2 = λ1�v2

Define now two new basis vectors �v+ = Re (�v1)
, �v− = Im(�v1) as the real and imaginary parts
of the eigenvalues; they define what is called the
normal form basis for stable motion. So we have

�v1 = �v+ + i�v−

�v2 = �v+ − i�v−. (172)

We now observe

cM�v1 = λ1�v1 = eiμ (�v+ + i�v−)

= cosμ · �v+ − sinμ · �v−
+i (sinμ · �v+ + cosμ · �v−)

and similarly

cM�v2 = λ2�v2 = e−iμ (�v+ − i�v−)

= cosμ · �v+ − sinμ · �v−
−i (sinμ · �v+ + cosμ · �v−) .

Now assume we have a general vector expressed
in the basis vectors �v± with coefficients α and β,
i.e. �x = α�v+ + β�v−. Then we have

cM�x = αcM�v+ + βcM�v−

= αcM�v1 + �v2
2

+ βcM�v1 − �v2
2i

= α
cM�v1 + cM�v2

2
+ β

cM�v1 − cM�v2
2i

= α (cosμ · �v+ − sinμ · �v−)
+β (sinμ · �v+ + cosμ · �v−)

= (α cosμ+ β sinμ)�v+

+(−α sinμ+ β cosμ)�v−

So altogether, in normal form coordinates, we
have

M̂

µ
α
β

¶
=

µ
α cosμ+ β sinμ
−α sinμ+ β cosμ

¶
=

µ
cosμ sinμ
− sinμ cosμ

¶µ
α
β

¶
,

and thus the transformation M̂ simply performs
a rotation!

circles

v+

v-

The angle of the rotation in normal form
coordinates is simply equal to the tune μ; and
no wonder the motion is stable. To obtain the
motion in the original Cartesian coordinates, we
have to subject the circles to a linear transforma-
tion, which turns them into ellipses; so the motion
looks as follows. The angle by which particles
move in the original x, a coordinates is not nec-
essarily μ anymore; but we can conclude that in-
deed if we look at the average angle advance over
many turns, then this average converges to the
tune μ,as at least the number of full revolutions
that were experienced must agree in both coordi-
nate systems.

It is also very illuminating to see what hap-
pens if the system is subjected to some small er-
rors, which in reality of course always appear. If
the eigenvalues were far enough from unity, even
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x

a
v-

v+

Figure 3:

under small errors we still have λ1 = λ2, λ1 = λ−12 ,
and while the tune μ may have changed a lit-
tle, the qualitative behavior of stability is to-
tally unaffected. So as long as we maintain that¯̄̄³
trcM´ /2¯̄̄ < 1 is maintained, stability prevails.

If on the other hand the perturbation is so large
that this is violated, the perturbation leads to the
loss of stability.

1λλ 2=1

λ1

λ2

OK

OK

bad

bad
v1

v2

For the sake of completeness, let us also
consider the case of

¯̄̄
trcM ¯̄̄ = 2. In this case,

λ1,2 = 1,and

cM = c±I.
This is in principle stable forever; but under the
slightest perturbation, there is danger of becom-
ing unstable, and hence this case is practically
useless.

1. The Invariant Ellipse

For many practical purposes it is particu-
larly important to know in detail the parameters
of the ellipse that is invariant under stable lin-
ear motion. For this purpose, let λ1,2 = e±iμ,
and choose the sign of the tune μ such that
sign (μ) = sign ((x|a)) . We then define three pa-
rameters αi, βi, γi as

αi =
(x|x)− (a|a)
2 sinμi

βi =
(x|a)
sinμi

γi = − (a|x)
sinμi

(173)

As we shall prove now, these three parameters
describe the invariant ellipse viaµ

x
a

¶t

·
µ

γi αi

αi βi

¶
·
µ

x
a

¶
= 1, (174)

where the matrix describing the ellipse is called
T̂ . To prove that T̂ is actually invariant, we first
express the transfer matrix in terms of the para-
meters. To this end, we observe that since

λ1,2 =
trcM
2
±

vuutÃtrcM
2

!2
− 1

we have that

(x|x) + (a|a) = trcM = λ1 + λ2

= eiμ + e−iμ = 2 cosμ
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From the definition of αi, we have (x|x)− (a|a) =
2 sinμi · αi, and hence

(x|x) = cosμi + αi sinμi

(a|a) = cosμi − αi sinμi

On the other hand, from the definitions of βi, γi ,
we have

(x|a) = βi sinμi,

(a|x) = −γi sinμi,

and so altogether

cM =

µ
cosμi + αi sinμi βi sinμi
−γi sinμi cosμi − αi sinμi

¶
(175)

Letting

bI = µ 1 0
0 1

¶
, bK =

µ
αi βi
−γi −αi

¶
, (176)

we have cM = bI cosμi + bK sinμi (177)

Computing the inverse map of M̂ , we find

cM−1 = bI cosμi − bK sinμi
where we used

¯̄̄
M̂
¯̄̄
= 1, and as a consequence

βiγi − α2i = 1, which we infer as follows:

1 =
¯̄̄cM ¯̄̄ = (cosμi + αi sinμi) (cosμi − αi sinμi)

+βiγi sin
2 μi

= cos2 μi +
¡
βiγi − α2i

¢
sin2 μi

= 1 +
¡
−1 + βiγi − α2i

¢
sin2 μi;

but since μi was not allowed to be zero or π be-
cause our requirement of stability, we must have
βiγi − α2i = 1.

We now are ready to study whether indeed
the ellipse defined above is invariant under M̂.

This is the case if whenever a particle satisfies
the ellipse equationµ

x
a

¶t

·
µ

γi αi

αi βi

¶
·
µ

x
a

¶
= 1,

their image under M̂, which is given by

M̂ ·
µ

x
a

¶
, (178)

also satisfies the ellipse equation. This means that
also½
M̂ ·

µ
x
a

¶¾t

·
µ

γi αi

αi βi

¶
·
½
M̂ ·

µ
x
a

¶¾
= 1.

This is the case if and only if

M̂ t · T̂ · M̂ = T̂ ,

since every ellipse is described by a unique sym-
metric matrix and M̂ t · T̂ · M̂ is indeed symmet-
ric. In order to execute the matrix multiplications
necessary, we study various matrix products; let

bJ def
=

µ
0 1
−1 0

¶
. (179)

We then have:

bT bK =

µ
γi αi

αi βi

¶µ
αi βi
−γi −αi

¶
=

µ
0 1
−1 0

¶
= bJ

bKT bT = bKT bT T =
³bT bK´T

= bJT = − bJbKT bJ =

µ
αi −γi
βi −αi

¶µ
0 1
−1 0

¶
=

µ
γi αi

αi βi

¶
= bT (180)

Now we are ready to compute the product
³cM´T ·bT · cM. We obtain
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x

Figure 4:

³cM´T · bT · cM
=

³bI cosμi + bKT sinμi
´ bT ³bI cosμi + bK sinμi´

=
³bI cosμi + bKT sinμi

´³bT cosμi + bJ sinμi´
= bT cos2 μi + bJ sinμi cosμi − bJ sinμi cosμi

+bT sin2 μi
= bT , (181)

which is indeed what we needed to prove. To
conclude we remark that there is not only one
invariant ellipse, but even every ellipse that can
be generated by stretching or shrinking from the
original one is invariant. So altogether, we have a
nested set of invariant ellipses, and particles will
always stay contained on the invariant ellipse on
which they are originally lying.

2. A Glimpse at Nonlinear Effects

Linear motion around a fixed point is com-
pletely classified by the two cases we discussed in
the previous section, namely the stable or unsta-
ble case. This situation is fundamentally dif-
ferent in the nonlinear case, it is in fact much

more complicated and interesting. Indeed there is
even a whole modern research field dealing with
just such questions, the field called nonlinear
dynamics.

While this is not at all the place to try to de-
velop a complete understanding of the nonlinear
effects that may appear, let us spend some time to
stake the territory and make some general obser-
vations. First we may expect that as long as the
motion is ”close enough” to the fixed point, it
is dominated by linear effects, and depending
on whether we have stability or not, we see either
stable elliptic motion or unstable hyperbolic mo-
tion. While we may expect that linearly unstable
motion will in most cases also stay unstable if we
consider the nonlinear effects, linear stable mo-
tion will not usually stay nonlinearly stable.
In fact, if the amplitudes of the motion become
large, the effects of nonlinearity will become no-
ticeable over-proportionally, and eventually they
will become dominating, in most cases leading to
instability for large amplitudes.

One can then try to heuristically separate
the phase space into a region that appears stable
for a reasonable number of turns, and a region
that appears unstable. According to the previ-
ous arguments, in most cases the stable region
will be near the fixed point, and the unstable re-
gion will be away from the fixed point. The re-
gion of transition between the apparently stable
and apparently unstable parts is usually called
the dynamic aperture, and it often looks like a
deformed ellipse.

Let us now study a little what conditions
seem to favor stable or unstable motion respec-
tively. If we divide the phase space regions into
parts in which the nonlinear effects have a ten-
dency to pull particles away from the origin and
those that tend to push the particles toward the
origin, then we may expect that we want to avoid
situations where the particles spend ”too much
time” in the ”pull away” regions, and it is better
if we sample the phase space uniformly, and thus
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averaging out the effects as much as possible.

A near uniform sampling of the phase space
is favored if the linear tune is not rational mul-
tiple of 2π. On the other hand, if the tune is of
the form μi = 2π

p
q
, after q turns the particle will

come back to where it was before and hence can
see the same effect, a situation which we call res-
onance; so it is at least not a good idea to choose
q too small, as repetition after large numbers of
turns is not as critical.

We may also wonder to what extent it is pos-
sible to perform a transformation to normal form
coordinates similar as in the linear case. As it
turns out, ”most” systems cannot be brought to
a normal form in which the motion is exactly cir-
cular; the existence of such a transformation is
tantamount to the system being integrable, i.e.
having one integral of motion per phase space di-
mension. Truly integrable systems, however, are
very rare. It turns out however, there is a beau-
tiful order-by-order iterative procedure to turn a
system into nonlinear normal form up to a given
order. In practice, this procedure, together with
the calculation of maps to higher order, is a prime
application of the differential algebraic meth-
ods developed by us, and so far not possible in
any other way; but this is a topic for PHY962!

IX. Linear Phase Space Motion

In this section, we want to study the action of
transfer matrices on particles by looking in detail
to what happens to entire regions of phase
space as they are transported. This is important
because the beam in an accelerator is just such a
region, and of course we want to make sure that
at any time, this region is within the beampipe!

a1

x1

a2

x2

M

M

Let us begin by collecting several observa-
tions about two dimensional transfer maps �M.

1. �M preserves areas

2. Different initial points have different final
points

3. Continuous curves stay continuous curves

4. Closed curves stay closed curves

5. A point inside a closed curve will stay inside
of the closed curve

Let us remind ourselves that the first point
led us to giving a name, namely ”emittance,” to
the preserved area: the figure illustrates again
how area is preserved.

x1

a1

x2

a2

The last two observations are particularly
important, as they tells us that if we can en-
close our beam within any closed boundary curve,
then it is sufficient to study the dynamics of this
boundary curve alone. It is interesting to note
that while in the two-dimensional case, closed
curves always stay closed curves, it is not gen-
erally true that in higher dimensions, closed sur-
faces stay closed surfaces. While this is true for
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linear higher-dimensional transformation, nonlin-
ear maps can produce some ”holes” in the sur-
faces through which particles that were initially
”trapped” inside the surface may find a way to
escape.

If in particular �M is linear, then we also have

1. Straight lines stay straight lines

2. Ellipses stay ellipses

Since straight lines stay straight lines, we
may ”manufacture” such a boundary curve as a
polygon; and to study its motion it is completely
sufficient to move only the cornerpoints. Alter-
natively, we may try to enclose the beam by an
ellipse. Before we follow these ideas, let us first
study the action in phase space of some simple
devices.

A. Phase Space Action of Drifts
and Lenses

In the case of a drift, the matrix is given by

M̂ =

µ
1 l
0 1

¶
(182)

This matrix leaves a constant and moves x by
an amount proportional to a; hence it perform a
horizontal shearing in phase space.

x

a

Similarly, a lens has the drift matrix

M̂ =

µ
1 0
−1/f 1

¶
; (183)

it leaves x invariant and changes a by a value pro-
portional to x; it performs a vertical shearing.

x

a

B. Phase Space Action of Quads
and Dipoles

In the case of quads and dipoles, the matrices
have the following form:

M̂ ∝
µ

cosφ k sinφ
− 1

k
sinφ cosφ

¶
This corresponds roughly to a rotation, except
that the x and a coordinates are also stretched or
compressed; the result is a motion on an ellipse.

Ellipse

a

x
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In fact, computing the invariant ellipse of the
motion following the procedure of the last section,
we get from eq. (175) that

αi = 0 (184)

βi = k (185)

γi =
1

k
, (186)

and as we expected, we see from αi = 0 that the
ellipse is even upright.

In order to study the motion of ensembles of
particles under linear transformations, it is useful
by characterize them by certain simple geometric
forms requiring few parameters in which the par-
ticles are contained. The two most useful such
forms are the polygon and the ellipse.

C. Polygon-like Phase Space

A polygon in phase space is uniquely defined
by its corner points; and since straight lines stay
straight lines, it is sufficient to study just the mo-
tion of the corner points.

a

x

M

x

a

Frequently a polygon with just four points
is chosen; if its lines are initially symmetrically
arranged around the origin, they will stay sym-
metrically arranged. But a four-point polygon
with symmetry around the origin is a parallelo-
gram, and so parallelograms always stay parallel-
ograms.

In many cases it is worth to study how the
actual beam width changes as a function of s-
position along the beamline. The beam width is

apparently determined by the maximum of the
horizontal positions of the corner points. In the
special case in which we consider motion through
a drift, each of the cornerpoints moves on a
straight line. Furthermore, the cornerpoint that is
furthest out will stay furthest out until it is possi-
bly overtaken by another cornerpoint; during the
time it determines the beamwidth, it entails that
the beam width changes linearly with s. Since the
outermost cornerpoint can change from time to
time, the resulting beam width is piecewise linear
with s.

D. Elliptic Phase Space

The other choice that is worth considering is
that of an elliptic phase space.

a

x

In this case, the boundary of the phase space
satisfies the ellipse condition

γx2 + 2αxa+ βa2 = ε. (187)

We first note that there is a redundancy in the
description of the ellipse: obviously, doubling the
values of α, β, γ as well as ε simultaneously leads
to the same ellipse. In order to eliminate this
redundancy, we demand that the determinant of
the ellipse be unity, i.e.

βγ − α2 = 1. (188)

With this choice of the matrix, the quantity ε is
a unique measure of its area. We recall that the
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ellipse can be written in matrix form as

(x, a) ·
µ

γ α
α β

¶
·
µ

x
a

¶
= ε. (189)

For future simplicity, we denote the matrix de-
scribing the ellipse by σ̂.

Now we are ready to study the question how
the phase space ellipse changes as we pass through
a system. Let M̂ be the transfer matrix of the sys-
tem; then the coordinates x1, a1 are transformed
to x2, a2 viaµ

x2
a2

¶
= cM ·

µ
x1
a1

¶
;

and we also haveµ
x1
a1

¶
= cM−1 ·

µ
x2
a2

¶
.

The new ellipse after the system characterized by
M̂ must obviously satisfy

(x2, a2) · bσ2 ·µ x2
a2

¶
= ε; (190)

observe that if we demand that det(σ̂2) = 1, even
the measure for the occupied area, ε, must be the
same as before since we know the transfer map
preserves area. We remind ourselves that the old
coordinates satisfy

(x1, a1) · bσ1 ·µ x1
a1

¶
= ε

Expressing x1, a1 in terms of x2, a2, which is ac-
complished by the inverse matrix, we get

(x2, a2) ·
µ³cM−1

´T
· bσ1 · cM−1

¶
·
µ

x2
a2

¶
= ε;

(191)
we first conclude that the resulting object is again
an ellipse; so ellipses are indeed preserved un-
der linear transformation. But furthermore, since

³cM−1
´T
· bσ1 · cM−1 is a symmetric matrix with

unity determinant, such a representation of an el-
lipse by a symmetric matrix of unity determinant
is unique, and because equations (190) and (191)
hold at the same time, we must conclude that

σ̂2 =
³cM−1

´T
· bσ1 · cM−1 (192)

E. Practical Meaning of α, β, γ

As we propagate the beam through a system,
the value of σ changes with s, and so do its three
characteristic quantities α, β, γ. It is now impor-
tant to study how the three quantities α, β and
γ describe important characteristics of the beam
like its width. Another important question relates
to the shape and degree of deformation of the el-
lipse; together with the widths, this is character-
ized by the points at which the ellipse intersects
the axes.

x

a

xm

am

a0

x0

   size of    beam pipe

The question of intersection with the axes
can be answered readily; in

γx2 + 2αxa+ βa2 = ε

we just set a and x to zero, and obtain

x0 =

r
ε

γ
, a0 =

r
ε

β
.
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Now for the calculation of the maximal points xm,
and am, which characterize the width as well as
the maximum angle in the ellipse. To this end,
we view the elliptic shape as the contour line of
a function, and remember that the gradient is al-
ways perpendicular to the contour lines. Hence
the maximum position occurs where the angular
component of the gradient vanishes, and the max-
imum angle occurs where the positional compo-
nent of the gradient disappears. To

f (x, a) = γx2 + 2αxa+ βa2 we have
�∇f = (2γx+ 2αa, 2αx+ 2βa) ,

and we infer that for the maximum position, we
must have ax = −βa, or a = −α/β · x. Inserting
this into the ellipse yields

γx2 + 2αx(−α
β
x) + β

µ
−α
β
x

¶2
= ε

βγx2 − 2α2x2 + α2x2 = εβ¡
βγ − α2

¢
x2 = εβ

or
xm =

p
εβ. (193)

Because of the symmetry of the equations with
respect to interchange of x and a, we see that
also

am =
√
εγ. (194)

So the width in x direction is determined by the
area of phase space ε as well as the function β.
Thus, β plays an eminent role, as it immediately
tells the width of a beam at a given point; and
plots of its value for different positions around
the accelerator are very common.

beta

s

F. The Explicit Transformation of
The Ellipse

For many practical purposes, it is useful to
explicitly study the transformation of the ellipse
(192) through the influence of the matrix M̂. We
first observe that if

M̂ =

µ
(x|x) (x|a)
(a|x) (a|a)

¶
,

then

cM−1 =

µ
(a|a) − (x|a)
− (a|x) (x|x)

¶
,

as simple arithmetic shows. So we have

bσ2 =
³cM−1

´T
·
µ

γ1 α1
α1 β1

¶
·
³cM−1

´
=

µ
γ2 α2
α2 β2

¶
=

µ
(a|a) − (a|x)
− (x|a) (x|x)

¶
·µ

γ1 α1
α1 β1

¶
·
µ

(a|a) − (x|a)
− (a|x) (x|x)

¶
Performing the calculations, we see first of all that
α2, β2, and γ2 depend linearly on α1, β1, and
γ1, and hence the relationship can be written in
matrix form (the third matrix, after M̂ and σ̂!,
and this time three-by-three; aren’t you getting
your money’s worth!) Explicity, we have⎛⎝ β2

α2
γ2

⎞⎠
=

⎛⎝ (x|x)2 −2 (x|x) (x|a)
− (x|x) (a|x) (x|x) (a|a) + (x|a) (a|x)
(a|x)2 −2 (a|x) (a|a)

(x|a)2
− (x|a) (a|a)
(a|a)2

⎞⎠⎛⎝ β1
α1
γ1

⎞⎠ .
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One particularly interesting case is the one where
we let an ellipse evolve under the action of a drift,
as shown in the picture:

drift

If we are interested in the way in which the
width of the beam changes, we must look at the
function β(s). For the special case of the drift
matrix with (x|x) = (a|a) = 1, (a|x) = 0 and
(x|a) = L, we have

β(s) = (x|x)2 β1 − 2 (x|x) (x|a)α1 + (x|a)2 γ1
= β1 − 2Lα1 + L2γ1

= γ1

µ
L− α1

γ1

¶2
− α21

γ1
+ β1.

So as a function of L, β(s) changes quadratically!
We also see readily that at the point where

L =
α

γ
, (195)

the beam has minimum width, and we have what
is called a ”waist”. Finally, we may ask ourselves
about the rate of change of β(s). Differentiating,
we obtain

dβ

dL
= 2Lγ1 − 2α1,

and hence

β0 = −2α (196)

β00 = 2γ (197)

para
bolic 

shapeβ

β1

Lα1/γ1

G. Invariant Ellipses Versus Beam
Ellipses

The last important question remaining in
this section is to put into perspective the para-
meters of the beam α, β, γ and the parameters
αi, βi, γi describing the invariant ellipse of the
cell of the accelerator. Are these greek letter
equal, are they related, or do they have nothing
to do with each other? This is actually a ques-
tion that often throws off even die-hard accelera-
tor physicists, and it is very much worthwhile to
understand it in depth.

As far as the theory goes, these two sets of
greek letters are actually totally independent.
In fact, one describes some property of an accel-
erator, and the other describes a property of a
beam; and of course we can feed any type of beam
into a given accelerator.

However, if the goal is to fill the accelerator
in the most efficient way, as it turns out this is ac-
complished if the beam’s greek agrees with the
accelerator’s greek! In this case, after one revolu-
tion the phase space will occupy exactly the same
area (although the individual particles in it are at
different positions), as shown in the picture.

Beam ellipse

Invariant ellipse

On the other hand, if one injects a beam with
an ellipse that does not agree with the invariant
ellipse of the accelerator, then the repetitive be-
havior of the beam ellipse shown solid in the next
picture is determined by the dashed invariant el-
lipse it touches.
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As we go around the repetitive system re-
peatedly, the beam ellipse stays within the dashed
ellipse and touches it, but depending on the tune,
will have a different orientation. In fact, if the
tune isn’t rational - something desireable for sta-
bility reasons - over time even all different orien-
tations will occur. If we now want to operate the
accelerator, we have to make sure we can han-
dle everything inside the dashed ellipse, leading
to considerable waste of area!

So it is best to operate a repetitive system
in such a way that the beam ellipse is matched
to the accelerator’s invariant ellipse, and to avoid
mismatching, the so-called beating.

X. Aberration Formulas

In this section, we want to derive a method
to compute the Taylor transfer map of a general
weakly nonlinear system that is origin preserving.
So let us assume we are given the system

d

ds
�r = �f (�r, s) ,

which satisfies �f(�0, s) = �0. We perform a Taylor
expansion of the right hand side. Because the
system is origin preserving, the first contribution
is linear, and altogether we have

d

ds
�r = M̂ (s) · �r +

∞X
j=2

�Nj (�r, s) ,

where the �Nj are polynomials of exact order j,
the coefficients of which may depend on s.

The first step in obtaining a perturbative so-
lution of the system is a linearization; we obtain

d

ds
�r = M̂ (s) · �r.

For this system, we determine a system of n inde-
pendent solutions �lk (s) , k = 1, ..., n, that satisfy

the initial condition

�lk (0) = (0, 0, . . . , 1|{z}
k−th

, . . . 0, 0)t.

We define the matrix

L̂ (s) =
³
�l1 (s) ,�l2 (s) , . . . ,�ln (s)

´
,

and observe that the general solution of the lin-
earized problem with initial condition �ri is then
given by

�r (s) = L̂ (s) · �ri.

In practice, the determination of L̂ may be pos-
sible in closed form, depending on the structure
of M̂, or may have to rely on numerical integra-
tion. For the special case that M̂ is piecewise
constant, then for every such piece, one can try
the Ansatz �lk = �vk · exp(ωks), which leads to the
condition

ωk�vk exp(ωks) = M̂ · �vk exp(ωks),

an eigenvector problem. If M̂ has n distinct eigen-
values, we are done, and depending on whether ωk
is real or complex, the solutions can also be ex-
pressed in terms of sin, cos or sinh, cosh. In case
of multiple eigenvalues, often solutions of the form
s· sin etc can be found.

The next step consists of an expansion of
�r (s) in a Taylor polynomial

�r (s) = L̂ (s) · �ri +
∞X
j=2

�Rj (s, �ri) ,

where �Rj denotes a polynomial of exact order j
in the initial conditions, the coefficients of which
may depend on s. We insert this expansion into
the ODE and obtain

d

ds
L̂ (s) · �ri +

∞X
j=2

d

ds
�Rj (s,�ri)
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= M̂ (s) · L̂ (s) · �ri + M̂ (s) ·
∞X
j=2

�Rj (s, �ri)

+
∞X
j=2

�Qj(s, bL, �Rk),

where the �Qj are polynomials of order j ≥ 2, in
�r , which result from inserting �r into the �Nj .
This insertion leaves no linear or constant parts,
which is due to the fact that the ODE is origin
preserving. This will prove crucial later on in the
algorithm for the solution.

We now sort the result by order; the linear
part has the form

d

ds
L̂ = M̂ · L̂, (198)

and the higher orders j = 2, ... assume the form

d

ds
�Rj (s, �ri) = M̂ (s) · �Rj (s, �ri) + �Qj(s, L̂, �Rk),

(199)
where the �Qj contains only �Rk with k < j .

So for j = 2, 3, ... we obtain a triangular
system of ODEs. It can be solved iteratively
in an order-by-order manner, and then each
of the differential equations for �Rj contains only
lower order terms �Rk that are already known. In
this way, the ODEs decouple and become in-
homogeneous. Because of the initial condition
�r(0) = �ri, we have that

L̂(0) = Î ,

�Rj (0, �r) = 0 for all j = 2, 3, . . .

In order to solve the inhomogenous equation
(199) of order j, we first determine the homoge-
neous solution, and then perform a so-called vari-
ation of parameters. The homogenous solution
is just exactly the same as for the linearized case,
and we have �Rj (s) = L̂ (s) · �T , where �T = �Rj(0).
To obtain the inhomogeneous solution, we now

make the Ansatz �Rj (s) = L̂ (s) · �T (s). Insertion
in (199) yields

d

ds
�Rj =

µ
d

ds
L̂(s)

¶
· �T (s) + L̂ (s) · d

ds
�T (s)

= M̂ (s) · L̂ (s) · T̂ (s) + �Qj(s, L̂, �Rk).

Considering that L̂ is a solution of the linear sys-
tem, we obtain

L̂ (s) · d
ds

�T (s) = �Qj(s, L̂, �Rk) or

�T (s) =

Z s

0

L̂−1(s
0
)�Qj(s

0
, bL, �Rk)ds

0
,

where the choice of the lower integration bound-
ary as 0 assures that �T (0) = 0, which is necessary
to satisfies the initial conditions. Altogether we
have

�Rj (s) = L̂ (s) ·
Z s

0

L̂−1(s
0
)�Qj(s

0
, L̂, �Rk)ds

0

The integral is often referred to as the aberra-
tion integral, and the argument of the integral
as the driving term. The complete solution then
is obtained as

�r (s) = L̂ (s) · �ri +
∞X
j=2

�Rj (s) .

So apparently, once the linear solution is known,
everything else just boils down to quadratures. If
within a piece in which it is constant, M̂ (s) is
diagonalizable, the linear solutions can be writ-
ten as combinations of sin, cos, sinh, cosh, and s.
In other important cases where M̂ (s) is singular,
often a complete set of linear solutions that are
polynomials in s can be obtained.

In both of these cases, the insertion into the
polynomials �Rj (s) leads to terms that are poly-
nomials in sin, cos, sinh, cosh, and s. By express-
ing such functions in terms of exponentials times
powers of s, one can show that the result of any
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integration can again be expressed as a polyno-
mial of sin, cos, sinh, cosh, and s.

For practical cases, it is worthwhile to discuss
the complexity of the procedure. With each new
order, the expansion of the ODE becomes more
complicated; then all previous orders have to be
inserted, multiplied with the linear inverses, and
integrated, resulting in substantially more terms
than for the previous order. Altogether, the ef-
fort increases extremely dramatically with
the order being considered, and for typical sys-
tems has proved practical only to orders around
five.

Computer codes that use the above proce-
dure usually contain a library of procedures that
compute the aberrations for each particle opti-
cal element of interest. The aberrations of com-
bined systems is then determined from those of
the pieces with the help of a composition proce-
dure. This approach was used first in the code
TRANSPORT to second order, and then to
third order in TRIO and the relatedGIOS. The
subsequent code MaryLie achieved third order
in a similar way using Poisson bracket methods.
COSY 5.0 contains libraries to fifth order, which
were generated using a custom-made formula ma-
nipulator.

Modern codes, including COSY INFIN-
ITY, usually make use of theDifferential Alge-
braic approach, which allows the computation of
aberrations to any order in an elegant way with-
out the need of explicit formulas for aberrations.

To illustrate the method of computation of
aberrations with a simple example, let us con-
sider the differential equation

x0 = a

a0 = −x+ k · x2,

which corresponds to the horizontal motion in a
quadrupole with a superimposed sextupole. We
first perform the linearization to obtain

µ
x
a

¶0

=

µ
0 1
−1 0

¶
·
µ

x
a

¶
= M̂ (s) ·

µ
x
a

¶
.

The linear solution then is

µ
xf
af

¶
=

µ
cos(s) sin(s)
− sin(s) cos(s)

¶
·
µ

xi
ai

¶
= L̂ (s) ·

µ
xi
ai

¶
.

The next step is the expansion of the ODE,
which is already done. We then insert the ex-
pansion of the transfer map

x (s) = (x|x)xi + (x|a) ai
+(x|xx)x2i + (x|xa)xiai + (x|aa) a2i

a (s) = (a|x)xi + (a|a) ai
+(a|xx)x2i + (a|xa)xiai + (a|aa) a2i

into the ODE and obtain

(x|x)0 xi + (x|a)
0
ai +

(x|xx)0 x2i + (x|xa)
0
xiai + (x|aa)

0
a2i

= (a|x)xi + (a|a) ai +
(a|xx) x2i + (a|xa)xiai + (a|aa) a2i

(a|x)0 xi + (a|a)
0
ai +

(a|xx)0 x2i + (a|xa)
0
xiai + (a|aa)

0
a2i

= −
∙

(x|x)xi + (x|a) ai
+(x|xx) x2i + (x|xa)xiai + (x|aa) a2i

¸
+k

∙
(x|x)2 x2i + 2 (x|x) (x|a)xiai

+(x|a)2 a2i + . . .

¸
Since we are interested only in order 2, we can
ignore the higher order terms. The second order
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equations then read

(x|xx)0 x2i + (x|xa)
0
xiai + (x|aa)

0
a2i

= (a|xx) x2i + (a|xa) xiai + (a|aa) a2i

and

(a|xx)0 x2i + (a|xa)
0
xiai + (a|aa)

0
a2i

= − (x|xx)x2i − (x|xa)xiai − (x|aa) a2i
+k (x|x)2 x2i + 2k (x|x) (x|a)xiai + k (x|a)2 a2i

where the last line contains the inhomogenous
part. Following the algorithm, we make the
ansatz

µ
(x|xx)x2i + (x|xa)xiai + (x|aa) a2i
(a|xx)x2i + (a|xa)xiai + (a|aa) a2i

¶
=

µ
cos s sin s
− sin s cos s

¶
· �T (s) ,

which then leads to

�T (s)

=

Z s

0

µ
cos s

0 − sin s0

sin s
0

cos s
0

¶
·⎛⎜⎜⎝

0
{k cos2 s0 · x2i

+2k cos s
0
sin s

0 · xiai
+k sin2 s

0 · a2i}

⎞⎟⎟⎠ ds
0

= k ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z s

0

{− cos2 s0 · sin s0 · x2i
−2 cos s0 · sin2 s0 · xiai
− sin3 s0 · a2i } ds0 ,Z s

0

{cos3 s0 · x2i
+2 cos2 s

0 · sin s0 · xiai
+cos s

0
sin2 s

0 · a2i } ds0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= k ·

⎛⎜⎜⎝
{1/3(cos3 s− 1) · x2i − 2/3 sin3 s · xiai
+(cos s− 1/3 cos3 s− 2/3) · a2i } ,

{(sin s− 1/3 sin3 s) · x2i
−2/3 cos3 s · xiai + 1/3 sin3 s · a2i}

⎞⎟⎟⎠

Then we obtain �R2 (s) = L̂ (s) · �T (s) , which
yields the matrix elements

(x, xx) = k ·
∙
1

3
sin2 s− 1

3
cos s+

1

3

¸
(x, xa) = k ·

∙
−2
3
sin s cos s+

2

3
sin s

¸
(x, aa) = k ·

∙
1

3
cos2 s− 2

3
cos s+

1

3

¸
(a, xx) = k ·

∙
2

3
sin s cos s+

1

3
sin s

¸
(a, xa) = k ·

∙
+
2

3
sin2 s− 2

3
cos2 s+

2

3
cos s

¸
(a, aa) = k ·

∙
−2
3
sin s cos s+

2

3
sin s

¸
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In a similar fashion, but with much more ef-
fort, one could now compute the third and higher
order terms.

Examples typical E
Van de Graff Many fixed stage 30 M eV

Linac SLAC , 50 GeV (e
−
)

Betatron Kerst 300 MeV e, 50 Mev p

M icrotron (CEBAF)

Cyclotron LBL 20 Mev (p)

Synchro cyclotron Dubna 500 Mev (p)

Iso chro Cyclotron NSCL 200 MeV/A

Synchrotron (p
±
) Tevatron ; LHC 1TeV ; 8 TeV

Synchrotron (e
±
) LEP 200 GeV

Wake Field - 1000 TeV (??)
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