Analog vs. Digital Hadron Calorimetry for the ILC

Dhiman Chakraborty for the NIU/NICADD ILC detector group

International Linear Collider Large Detector Meeting LLR, Paris, January 13–15, 2005

Introduction

- We consider a hadronic calorimeter with a few thresholds (1-3).
- Compare gas and scintillator as live media:
 - Single particle energy resolution,
 - Shower width,
 - Clustering.

Number of cells hit by π⁺s of 2, 5, 10, 20, 30, 50 GeV

π^+ energy resolution as function of energy for different (linear) cell sizes

Energy resolution for 10 GeV π^+s

ILC LD meeting, 14-01-2005

Energy resolution for 50 GeV π^+s

ILC LD meeting, 14-01-2005

Nhit correlations for different cell energy thresholds

ILC LD meeting, 14-01-2005

Nhit correlations for different cell energy thresholds

ILC LD meeting, 14-01-2005

Nhit correlations for different cell energy thresholds

ILC LD meeting, 14-01-2005

Alternatively,

ILC LD meeting, 14-01-2005

Compensation

- Cell counting has its own version of the compensation problem (in scintillators).
- With multiple threshold this can be overcome by weighting cells differently (according to the threshold they passed).
- In MC, 3 thresholds seem to be adequate

After semi-digital treatment

ILC LD meeting, 14-01-2005

Energy resolution: 50 GeV π^+ s

ILC LD meeting, 14-01-2005

Energy resolution: 10 GeV π^+ s

ILC LD meeting, 14-01-2005

π^+ energy resolution vs. energy

Time of flight

ILC LD meeting, 14-01-2005

ToF dependence

Cross-talk

(10% of cell E leaks equally to 4 neighbors)

2005

Nhit vs. fraction of π^+ E in cells with E>10 MIP: 1cm x 1cm scintillator cells

ILC LD meeting, 14-01-2005

Analog vs. Digital HCal for ILC Dhiman Chakraborty 0.925

10GeV

30GeV

50GeV

Nhit vs. fraction of π^+ E in cells with E>10 MIP: Gas vs. scintillator

ILC LD meeting, 14-01-2005

π^+ energy resolution vs. energy

22

Non-linearity

- Nhit/GeV varies with energy.
- This will introduce additional pressure on the "constant" term.
- For scintillator the non-linearity can be effectively removed by "semi-digital" treatment.

Density of hits

- Need a hierarchy in the absence of an energy measurement.
- Local density of hits is an obvious candidate.
- A simple-minded density variable:

 $d_{i} = \Sigma (1/R_{ij}),$

where R_{ij} is the angular distance between cells i & j.

Position resolution

Measured relative to the energy weighted resolutions

2005

Density vs. Energy

ILC LD meeting, 14-01-2005

Width

- Find centroid $\{\Sigma w_i x_i / \Sigma w_i\}$
- 'width' = sqrt($\Sigma w_i R^2_i / \Sigma w_i$)
- Three weights were used:
 - Unweighted (W_i =1)
 - Energy weighted $(W_i = E_i)$
 - Density weighted (W_i=nearest-neighbor occupancy in a 5x5 window in lyrs k-1,k,k+1)

Distance to farthest cell

ILC LD meeting, 14-01-2005

Density of farthest cell

ILC LD meeting, 14-01-2005

Distance to farthest cell

ILC LD meeting, 14-01-2005

Density of farthest cell

ILC LD meeting, 14-01-2005

Backscatter

ILC LD meeting, 14-01-2005

Shower width for 10GeV π^{\pm}

ILC LD meeting, 14-01-2005

Shower width for 50GeV π^{\pm}

ILC LD meeting, 14-01-2005

π^{\pm} angular width

rms shown as bars

π^{\pm} angular width: energy weighted

36

π^{\pm} angular width: density weighted

ILC LD meeting, 14-01-2005

Comments

- There is no clear cut case either way at the moment; detailed studies of assessing impact needed.
- Will look at cluster separability next.
- Need to evaluate this in the global context of calorimeter performance.

Clustering

- Clustering based on local density works well.
- It is an alternative to track-seeded clustering.
- Can be used in the ECal and HCal.
- Full PFlow implementation gives encouraging results.

10 GeV $\pi^0 \rightarrow \gamma\gamma$

ILC LD meeting, 14-01-2005

 $\Sigma^+ \rightarrow P \pi^0 \rightarrow P \gamma \gamma$

ILC LD meeting, 14-01-2005

Summary

- Large parameter space in the nbit– segmentation–medium plane for hadron calorimetry. Optimization through cost– benefit analysis?
- Scintillator and Gas-based 'digital' HCals behave differently.
- Need to simulate detector effects (noise, x-talk, non-linearities, etc.)
- Need verification in test-beam data.
- More studies underway.

ILC LD meeting, 14-01-2005