
Chapter 1

Basic Concepts of Group

Theory

The theory of groups and vector spaces has many important applications in a
number of branches of modern theoretical physics. These include the formal
theory of classical mechanics, special and general relativity, solid state physics,
general quantum theory, and elementary particle physics. Thus, I will sum-
marize the basic concepts of group theory and vector spaces, especially for the
benefit of those among you who have not had an exposure to these before. I
hope you will find these useful not only for this course in classical mechanics,
but for most others that you will take during you graduate studies as well.

1.1 Groups

1.1.1 Monoids

A group is a mathematical set equipped with a law of combining any two ele-
ments to produce a third element in the set. This law of combination is required
to satitsfy certain crucial axioms which, over the years, have been found to pro-
duce a mathematical structure of exceptional importance and interest. One of
the most significant concrete examples of group structure is associated with the
family of maps of any set into itself. This specific example is in many ways
paradigmatic for the entire theory of groups.

Let X and Y be any pair of sets. A map (or function) from X to Y is
an assignment of a unique element of Y to each element of X . If f is such a
function then we often write f : X → Y to indicate the pair of spaces X and
Y involved as well as the map itself. The unique element in Y associated with
a specific element x in X is denoted by f(x) (or sometimes by fx). We shall
frequently deal with the family of all possible maps from X to Y and this set
will be denoted Map(X, Y ).

Note that a typical map from X to Y will be:
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1. Many-to-one: more than one element in X is mapped to the same element
in Y , i.e., f(x1) = f(x2) for some x1 and x2.

2. Strictly “into” Y : there will, in general, be some elements y in Y for which
there is no element x in X for which y = f(x).

A map from X to Y which is both one-to-one and “onto” is called a bijection

from X to Y . It establishes a unique correspondence between the elements of
X and Y which means that, from a purely set theoretic viewpoint, these can be
regarded as the “same” set. Bijections between X and Y will exist if and only
if they have the same number of elements.

For our purposes, the set Map(X, X) of all maps of a set into itself is of
special importance. This is because given f : X → X and g : X → X , we can
combine them to form a third element f · g : X → X which is defined on any
element x in X by first mapping it to g(x) and then mapping this image point
to f(g(x)). Thus f · g : X → X is defined by

f · g : X → X ≡ f(g(x)) for all x in X . (1.1)

Two particularly significant properties of the set Map(X, X) and the law of
composition “·” are:

1. If f , g, h are three maps from X to X then

f · (g · h) = (f · g) · h; (1.2)

2. The identity map from X onto itself is denoted by ix and is defined in the
obvious way as

ix(x) ≡ x for all x in X . (1.3)

Then it follows that, for any function f : X → X , we have

f · ix = ix · f = f. (1.4)

Definitions.

1. A law of composition on a set A is a rule that associates with each pair
of elements (a1, a2) (where a1 and a2 belong to A), a third element in A
written as a1a2.

2. The law is associative if

a1(a2a3) = (a1a2)a3 for any a1, a2 and a3 in A. (1.5)

3. an element e in A is said to be the unit element if

ae = ea = a for all a in A. (1.6)

3



4. A set is a monoid if it has a law of composititon that is associative and
for which there is a unit element. (We shall shortly see that the idea of a
monoid is a natural precursor to the concept of a group.)

Note. If such a unit element e exists, then it is unique. For if e′ is any other
unit, we have e = ee′ = e′.

Examples.

1. The set of mappings Map(X, X) is a monoid for any set X .

2. The set of integers Z is a monoid if the law of composition is ordinary
addition with the unit element being the number 0.

3. Z also is a monoid if the law of composition is defined to be ordinary
multiplication. In this case, the unit element is the number 1.

Generally speaking, the “product” a1a2 of a pair of elements a1 and a2 in a
monoid will not be the same element as the product a2a1. However, the monoids
for which all such producs are equal are of particular importance and warrant
a special definition.

Definition.

A monoid is said to be commutative (or abelian) if
a1a2 = a2a1 for all a1 and a2 in A.

Examples.

1. The set of integers Z is an abelian monoid with regard to both monoid
structures defined in the above examples.

2. In general, a monoid Map(X, X) is not commutative. For example, let
R denote the real numbers. Consider Map(R, R) and the two particular
functions

f : R → R f(x) ≡ x2,

g : R → R g(x) ≡ x + 1.

Then f · g(x) = (x + 1)2 whereas g · f(x) = x2 + 1, and of course these are
not the same.

3. An important example of a monoid is provided by the set M(n, R) of all
n× n real matrices where the composition of two elements M1 and M2 is
defined to be the conventional matrix multiplication:

(M1M2)ij ≡
n

∑

k=1

M1ikM2kj

and the unit element is the unit matrix 1 ≡ diag(1, 1, . . . , 1). This monoid
structure is clearly non-abelian and the same applies to the analogous
monoid structure defined on the set M(n, C) of all n×n complex matrices.

4



4. However, as in the case of integers, there is another monoid structure that
can be defined on M(n, R), and similarly on M(n, C), which is abelian.
This involves defining the composition of two matrices as the sum of the
matrices, rather than the product. In this case, the unit element is the
null matrix, i.e., the matrix whose elements are all zero.

1.1.2 The basic idea of a group

The essential difference between a monoid and a group is that, in the latter,
every element has an inverse. This property is of fundamental significance for
the applicability of group theory to physics, and is formalized in the following
definition.

Definitions.

1. An element b in a monoid A is said to be an inverse of an element a in A
if

ba = ab = 1. (1.7)

2. A group is a monoid in which every element has an inverse.

Note. If b and b′ are both inverses of a then they are equal since

b′ = b′e = b′(ab) = (b′a)b = eb = b.

Thus inverses are unique and it is meaningful to speak of the inverse of an
element a in A. The inverse of an element a is usually wrirtten as a−1.

Examples.

1. The set of integers Z is an abelian group with respect to the monoid
structure in which the composition is defined as addition. The inverse of
an integer n is clearly −n.

This set Z, however, is not a group under the alternatitve monoid structure
in which the composition is defined as multiplication, whence the inverse
of an integer n would have to be 1/n, but this is not itself an integer.

2. The set Q of all rational numbers is an abelian group under the law of
addition.

3. The set Q∗ of all non-zero rational numbers is an abelian group under
multiplication if the inverse of the rational number n/m is defined to be
the rational number m/n.

4. In the monoid Map(X, X), the inverse of a function f : X → X would be
a function g : X → X such that f · g = g · f = iX , i.e., f(g(x)) = g(f(x))
for all x in X .

A function f will not have an inverse if it is many-to-one or if it maps
strictly “into” X . Such functions will always exist whenever the set X
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contains more than one element. Hence, except in that rather trivial case,
Map(X, X) is never a group.

This property of Map(X, X) motivates the following, very important, def-
inition.

Definitions.

1. A map f : X → X is said to be a bijection (or permutation) of X if

(a) f is a one-to-one map (i.e., it is injective), and

(b) f maps X onto iself (i.e., it is surjective).

2. Every such map has an inverse and it follows that the set Perm(X) of all
bijections of X onto itself is a group. If N , the number of elements in X ,
is finite, then Perm(X) is often called the symmetric group SN .

Note. The number of elements in a group G is called the order of the group
and is written as |G|. It is easy to see that the order of SN is N !.

When manipulatitng groups, it is convenient to define the “powers” of a
group element g in G by g2 ≡ gg, g3 ≡ g(g2) and so on. We then say that an
element g has order n if gn = e and n is the smallest integer with this property.

Definition.

Two groups G1 and G2 are said to be isomorphic (written as G1
∼= G2) if their

elements can be put in a one-to-one correspondence in a way that preserves the
group combination law.

More precisely, there must exist a bijection j : G1 → G2 such that

j(ab) = j(a)j(b) for all a and b in G1. (1.8)

The map j is said to be an isomorphism of G1 with G2.

Definition.

A subset H of a group G is said to be a subgroup of G if

1. The identity element e of G belongs to H .

2. If h1 and h2 are in H , then so is the product h1h2. (We say that H is
“closed” under the composition law of G.)

3. If h belongs to H , then so does h−1. (We say that H is “closed” under
inversion with the composition law of G.)

The theoretic inclusion sign H ⊂ G is often used to denote that H is a
subgroup of G.

Theorem (Cayley).
Any group G is isomorphic to a subgroup of Perm(X) for some choice of the set
X .
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1.1.3 Continuous Groups

An important class of groups is those that have an infinite number of elements
(i.e., groups of infinite order) in which the infinity concerned is “continuous”
rather than “countable”. Groups of this type play a fundamental rorle in modern
theoretical physics.

Examples.

1. The set R of all real numbers is an abelian group in which the group
composition law is the usual addition of numbers. Note that the countably
infinite groups Z and Q can be regarded as subgroups of R.

2. The set R+ of positive real numbers is a continuously infinite abelian group
under the law of multiplication.

3. Let Rn denote the product n times the abelian group R. Thus the group
elements are sets of real numbers (r1, r2, . . . , rn) with the law of composi-
tion

(r1, r2, . . . , rn) + (r′1, r
′
2, . . . , r

′
n) = (r1 + r′1, r2 + r′2, . . . , rn + r′n)

and with the unit element (0, 0, . . . , 0). Note that Rn is an abelian group,
which is why the composition law has been written as “+”. It clearly has
a continuously infinite number of group elements. An analogous set of
remarks apply to Cn.

4. The set U(1) of all complex numbers of modulus one is a continuously
infinite abelian group under the usual multiplication law of complex num-
bers.

An important refinement of the notion of “continuously infinite” is the con-
cept of real dimension of such a group. Roughly speaking, this is defined to be
the number of real numbers that are needed to specify a group element. Thus
the group R and Rn have dimension 1 and n, respectively.

Definition.

A Lie group of real dimension n is a set G that is

1. A group in the general sense discussed in Sec. 1.1.2.

2. A n-dimensional “differential manifold” in the sense that the points of G
can be parametrized in sufficiently small regions by a set of n real numbers
and that, if a second set of n coordinates is used to parametrize points
in a region that overlaps the first then, on the overlap region, the either
set of the parameters/coordinates must be differentiable functions of the
other set.

It is also required that the group composition law, and the taking of inverses,
should be “smooth” operations in the sense that
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1. The coordinates of the product gg′ should be differentiable functions of
the coordinates of g and g′ so long as all three group elements g, g′ and
gg′ lie in a region where a common set of coordinates can be used.

2. The coordinates of g−1 should be differentiable functions of the coordi-
nates of g as long as they lie in the same coordinate region.

We will now give some important examples of Lie groups.

Examples.

1. The necessary and sufficient condition for a matrix in M(n, R) to be in-
vertible is that its determinant should be non-zero. This motivates the
definition of the general linear group in n dimensions

GL(n, R) ≡ {A in M(n, R) such that det(A) 6= 0.}

This is a n2 dimensional group under matrix multiplication in which the
inverse of a group element is simply its inverse as a matrix in the usual
sense, and the unit element is the unit matrix 1.

Many groups of major significance in theoretical physics appear as explicit
subgroups of the general linear group.

2. The special linear group is a defined as

SL(n, R) ≡ {A in GL(n, R) such that det(A) = 1.}

It can be shown that SL(n, R) is a subgroup of GL(n, R). Indeed, SL(n, R)
is itself a Lie group of dimension n2 − 1.

3. Another important example is the real orthogonal group, which is the
subgroup of GL(n, R) of all real n × n orthogonal matrices;

O(n, R) ≡ {A in GL(n, R) such that AAT = 1},

where AT denotes the transpose of the matrix A. The dimension of O(n, R)
is n(n − 1)/2.

4. The equation AAT = 1 implies that det(A) = ±1. The continuous
group O(n, R) decomposes into two disjoint pieces according to the sign
of det(A), which motivates the definition of the special orthogonal group

SO(n, R) ≡ {A in O(n, R) such that det(A) = 1.}

The dimension of SO(n, R) is the same as that of O(n, R), namely n(n − 1)/2.

The simplest non-trivial example of a special orthogonal group is SO(2, R)

which is he set of all 2 × 2 matrices

(

a b
c d

)

satisfying the conditions

(

a b
c d

) (

a c
b d

)

=

(

1 0
0 1

)

(1.9)
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and

det

(

a b
c d

)

= 1. (1.10)

Equation 1.9 is equivalent to the three equations

a2 + b2 = 1, (1.11)

c2 + d2 = 1, (1.12)

ac + bd = 0, (1.13)

while Eq. 1.10 implies
ad − bc = 1. (1.14)

It follows that
c = −b, d = a. (1.15)

Without any loss of generality, we can write a = cos θ and b = sin θ, for
some (real) angle θ. So the most general form for a matrix in SO(2, R)
can be written as

A =

(

cos θ sin θ
− sin θ cos θ

)

with 0 ≤ θ ≤ 2π. (1.16)

This shows rather clearly that SO(2, R) has the topological structure
of a circle, just as does the group U(1). In fact, these two abelian,
1-dimensional Lie groups are isomorphic with an isomorphism that maps
the group element eiθ in U(1) onto the matrix in SO(2, R) in Eq. 1.16.

5. In analogy with the real orthogonal group, the unitary group U(n) is de-
fined for each n as

U(n) ≡ {A in GL(n, C) such that AA† = 1},

where A† denotes the adjoint of the matrix A and is defined as (A†)ij ≡
A∗

ji, where A∗
ij is the complex conjugate of the matrix element Aij . U(n)

is a n2-dimensional subgroup of GL(n, C). It is non-abelian for n > 1.

6. A group that plays a central role in the classification of elementary parti-
cles and in the construction of grand unified theories is the special unitary

group defined for each n as

SU(n) ≡ {A in U(n) such that det(A) = 1.}

SU(n) is a subgroup of U(n), and has a dimension of n2 − 1.

A concrete realization of SU(2) in the general matrix form (with the usual
matrix muliplication being the law of composition) is given by

A =

(

a b
−b∗ a∗

)

with |a|2 + |b|2 = 1. (1.17)

Topologically speaking, the group SU(2) is a 3-sphere embedded in the real
4-dimensional Cartesian space R4 with coordinates Re(a), Im(a), Re(b),
Im(b).
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