Mid-term Exam: Solutions

Date: 2006/10/23
Time: 1 hr 15 min

30 points

Q $1[3+1+1=5$ points $]$
Consider the following transformations of the coordinate system:

$$
\begin{array}{lll}
\{t, \mathbf{r}\} & \xrightarrow{E} & \{t, \mathbf{r}\}, \\
\{t, \mathbf{r}\} & \xrightarrow{P} & \{t,-\mathbf{r}\}, \\
\{t, \mathbf{r}\} & \xrightarrow{T}\{-t, \mathbf{r}\},
\end{array}
$$

as well as the transformation $P T$ that is generated by performing first T and then P.
(a) Write the combination of every pair of the above transformations in the form of a matrix (truth table), and thus show that $\{E, P, T, P T\}$ form a group.
(b) Identify the inverse of each element.
(c) Is the group abelian, or non-abelian?

A 1 (a)

	E	P	T	$P T$
E	E	P	T	$P T$
P	P	E	$P T$	T
T	T	$P T$	E	P
$P T$	$P T$	T	P	E

(b) Every element is its own inverse.
(c) Abelian.

Q $2[4+4+5+2=15$ points $]$
Consider the coplanar double-pendulum suspended from a fixed support and placed in a uniform gravitational field \mathbf{g} as shown in Fig. 1.
(a) Write down the Lagrangian.
(b) Determine the equations of motion under the following small-angle approximations:

$$
\begin{array}{ll}
\sin \theta_{1} \approx \theta_{1}, & \sin \theta_{2} \approx \theta_{2} \\
\cos \theta_{1} \approx 1-\frac{\theta_{1}^{2}}{2}, & \cos \theta_{2} \approx 1-\frac{\theta_{2}^{2}}{2}, \quad \cos \left(\theta_{1}-\theta_{2}\right) \approx 1
\end{array}
$$

(c) From the characteristic equation, find the eigenfrequencies.
(d) What happens in the limit $\frac{m_{1}}{m_{2}} \rightarrow \infty$?

Figure 1

A 2 (a) We choose θ_{1} and θ_{2}, as shown in the figure, as the generalized coordinates. The cartesian coordinates of m_{1} are

$$
\begin{equation*}
x_{1}=\ell_{1} \sin \theta_{1}, \quad y_{1}=\ell_{1} \cos \theta_{1}, \tag{1}
\end{equation*}
$$

and those of m_{2} are

$$
\begin{equation*}
x_{2}=\ell_{1} \sin \theta_{1}+\ell_{2} \sin \theta_{2}, \quad y_{2}=\ell_{1} \cos \theta_{1}+\ell_{2} \cos \theta_{2} \tag{2}
\end{equation*}
$$

The total kinetic energy is

$$
\begin{align*}
T=T_{1}+T_{2}= & \frac{m_{1}}{2}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{m_{2}}{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \\
& \left.=\frac{m_{1}}{2} \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{m_{2}}{2}\left(\ell_{1}^{2} \dot{\theta}_{1}^{2}+\ell_{2}^{2} \dot{\theta}_{2}^{2}+2 \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}\right)\right) \tag{3}
\end{align*}
$$

and the total potential energy is
$U=U_{1}+U_{2}=-g\left(m_{1} y_{1}+m_{2} y_{2}\right)=-\left(m_{1}+m_{2}\right) g \ell_{1} \cos \theta_{1}-m_{2} g \ell_{2} \cos \theta_{2}$.
Hence, the Lagrangian is

$$
\begin{align*}
L=T-U= & \frac{1}{2}\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} \ell_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} \ell_{1} \ell_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +\left(m_{1}+m_{2}\right) g \ell_{1} \cos \theta_{1}+m_{2} g \ell_{2} \cos \theta_{2} . \tag{5}
\end{align*}
$$

(b) Under the given small-angle approximations, after dropping the additive constants from L, Eq. 5 reduces to

$$
\begin{align*}
L= & T-U \\
= & \frac{1}{2}\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} \ell_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} \ell_{1} \ell_{2} \dot{\theta}_{1} \dot{\theta}_{2} \tag{6}\\
& -\frac{1}{2}\left(m_{1}+m_{2}\right) g \ell_{1} \theta_{1}^{2}-\frac{1}{2} m_{2} g \ell_{2} \theta_{2}^{2} .
\end{align*}
$$

The equations of motion are

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \tag{7}
\end{equation*}
$$

with $q=\theta_{1}, \theta_{2}$, i.e.,

$$
\begin{align*}
& \left(m_{1}+m_{2}\right) \ell_{1} \ddot{\theta}_{1}+m_{2} \ell_{2} \ddot{\theta}_{2}+\left(m_{1}+m_{2}\right) g \theta_{1}=0, \\
& \ell_{1} \ddot{\theta}_{1}+\ell_{2} \ddot{\theta}_{2}+g \theta_{2}=0 \tag{8}
\end{align*}
$$

(c) Substituting trial solutions

$$
\begin{equation*}
\theta_{i}=A_{i} e^{-i \omega t} \tag{9}
\end{equation*}
$$

we get

$$
\begin{align*}
& A_{1}\left(m_{1}+m_{2}\right)\left(g-\ell_{1} \omega^{2}\right)-A_{2} \omega^{2} m_{2} \ell_{2}=0 \\
& A_{1} \ell_{1} \omega^{2}+A_{2}\left(g-\ell_{2} \omega^{2}\right)=0 \tag{10}
\end{align*}
$$

which leads to the characteristic equation

$$
\left|\begin{array}{cc}
\left(m_{1}+m_{2}\right) g-\omega^{2}\left(m_{1}+m_{2}\right) \ell_{1} & -\omega^{2} m_{2} \ell_{2} \tag{11}\\
-\omega^{2} \ell_{1} & g-\omega^{2} \ell_{2}
\end{array}\right|=0
$$

or,

$$
\ell_{1} \ell_{2} m_{1} \omega^{4}-\left(m_{1}+m_{2}\right)\left(\ell_{1}+\ell_{2}\right) g \omega^{2}+\left(m_{1}+m_{2}\right) g^{2}=0
$$

The roots of the characteristic equation are

$$
\begin{align*}
\omega_{1,2}^{2}= & \frac{g}{2 m_{1} \ell_{1} \ell_{2}}\left[\left(m_{1}+m_{2}\right)\left(\ell_{1}+\ell_{2}\right)\right. \tag{12}\\
& \left. \pm \sqrt{m_{1}+m_{2}} \sqrt{\left(m_{1}+m_{2}\right)\left(\ell_{1}+\ell_{2}\right)^{2}-4 m_{1} \ell_{1} \ell_{2}}\right] .
\end{align*}
$$

(d) As $\frac{m_{1}}{m_{2}} \rightarrow \infty, \omega_{1} \rightarrow \sqrt{\frac{g}{\ell_{1}}}, \omega_{2} \rightarrow \sqrt{\frac{g}{\ell_{2}}}$, corresponding to independent oscillations of the two pendula.

Q 3 [10 points]
A homogeneous disk of mass M and radius R rolls without slipping on a horizontal surface and is attracted to a point a distance ℓ below the surface, as shown in Fig. 2.

Figure 2
If the force of attraction is proportional to the distance between the disk's center of mass and and the center of the force, show that the disk will undergo a simple harmonic motion and find its frequency.

A 3 The force acting on the center of mass of the disk is

$$
\begin{equation*}
\mathbf{F}=-k \mathbf{r} \tag{13}
\end{equation*}
$$

Only the x component of the force,

$$
\begin{equation*}
F_{x}=-k r \sin \theta=-k x, \tag{14}
\end{equation*}
$$

is allowed to do any work. This corresponds to an effective potential

$$
\begin{equation*}
U(x)=-\int_{0}^{x} F_{x}(u) d u=\frac{1}{2} k x^{2} . \tag{15}
\end{equation*}
$$

The kinetic energy of the disk is

$$
\begin{equation*}
T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} I \dot{\theta}^{2} \tag{16}
\end{equation*}
$$

where I is the moment of inertia of the disk about the axis of rotation. The surface mass density of the disk is

$$
\begin{equation*}
\rho=\frac{M}{\pi R^{2}} . \tag{17}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
I=\int_{M} r^{2} d m=\int_{0}^{R} r^{2}(\rho 2 \pi r d r)=\frac{2 M}{R^{2}}\left[\frac{r^{4}}{4}\right]_{0}^{R}=\frac{M R^{2}}{2} \tag{18}
\end{equation*}
$$

Since,

$$
\begin{equation*}
d x=R d \theta \tag{19}
\end{equation*}
$$

Using Eqs. 18 in Eq. 16 we get

$$
\begin{equation*}
T(x)=\frac{3}{4} M \dot{x}^{2} . \tag{20}
\end{equation*}
$$

From Eqs. 20 and 15, we have the Lagrangian

$$
\begin{equation*}
L=T-U=\frac{3}{4} M \dot{x}^{2}-\frac{1}{2} k x^{2} . \tag{21}
\end{equation*}
$$

So, the equation of motion is

$$
\begin{array}{r}
\quad \frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=0, \tag{22}\\
\text { or, } \quad \frac{3}{2} M \ddot{x}+k x=0,
\end{array}
$$

which represents a simple harmonic oscillation along x

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=0 \tag{23}
\end{equation*}
$$

with angular frequency

$$
\begin{equation*}
\omega=\sqrt{\frac{2 k}{3 M}} \tag{24}
\end{equation*}
$$

