NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW7

Assignment: HW7 [40 points]

Assigned: 2006/11/15
Due: 2006/11/22

Solutions

P7.1 [6+ 8 = 14 points]
A particle of mass m can move in one dimension under the influence of
two springs connected to two walls that are a distance a apart, as shown
in Fig. 7.1. The springs obey Hooke’s law, have zero unstretched lengths
and spring constants k1 and ks respectively.

X

Figure 7.1

(a) Let x be the length of the first spring, and b its equilibrium value.
Using the displacement from the equilibrium, g =  — b, as the gen-
eralized coordinate, find the Hamiltonian and the total energy of the
system, and examine if these quantities are conserved.

(b) Now consider the coordinate transformation
Q = g — bin(wt), 1)

where w is some constant (not necessarily the natural frequency of
the system). Find the Hamiltonian and the total energy of the system
in terms of @ and its conjugate momentum P, and examine if these
quantities are conserved.

S7.1 (a) The equilibrium condition requires the forces exerted on the mass by
the two springs to cancel each other:

ko
kib = ko(a —b b= . 2
1b = kz(a—10), or, Py (2)
Thus, the potential energy of the particle is
1
V= 5(1{;1322 + ka(a — x)%)
1 2 2
= 5 (kilg+6)" +ka(a—q—0)7) (3)
1o kike 4
where k = k1 + k2, and the kinetic energy is
T = mg® (4)



NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW7

k
We can drop the constant term 1k 242 from the potential energy
and write the Lagrangian as
1 1
L(q,q) = =m¢* — =kq?,
(4,4) = 5md” — 5kq

and the total energy as
E = %m(f + %qu.
The momentum corresponding to ¢ is
=9 =
p

or, q=—
m

D mg

which gives the Hamiltonian

ke

H —pj— L= S
(¢,p) = pq 5 T

(5)

(8)

Neither the Lagrangian nor the Hamiltonian has any explicit time
dependence. Therefore, both the total energy and the Hamiltonian

are conserved.

Under the transformation,
q = Q + bsin(wt)

and .
G = Q + bw cos(wt).
Therefore, from Eq. 5,

L(Q,Q) = %(Q + bw cos(wt))? — S(Q + bsin(wt))?,

and

m, . 5 k . 9

E = E(Q + bw cos(wt))® + E(Q + bsin(wt))?,
Thus,
P= g—g = m(Q + bw cos(wt))
or, Q= r_ bw cos(wt),
m
Therefore,
P? kK
E= o + 5(@ + bsin(wt))?,

and

H(Q,P)=PQ—-L
2

=P (g — bw cos(wt)) - §—m + S(Q + bsin(wt))?

= 2 5 Q4 bsinwt)? — P cos(u)
_2m B Simw W I~ COS(W

= FE — bwP cos(wt).



NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW7

Now,
% = E+k(Q+bsin(wt))((.;g+bw cos(wt)) = £(P+k(Q+bsin(wt))),
m m
(16)
but,
. 0H .
P= “90 - —k(Q + bsin(wt)). (17)
So, the RHS of Eq. 16 vanishes, i.e.,
dE
i 0. (18)

So, the energy is conserved, as expected. However, the new Hamil-
tonian depends explicitly on ¢, and is therefore not conserved.

P7.2 [4+ 2 = 6 points]
Let (¢q,p) be the phase-space coordinates of a system with one degree of
freedom.

(a) Under what conditions is the transformation

Q= ag; P = B¢ (19)

canonical (« and [ are constants)?

(b) Find a suitable generating function of type 1, Fi(q, @), for the above
transformation.

S7.2 (a) First, let us find the inverse transformations ¢(Q, P) and p(Q, P):

P _qQ QP
q—\/;, p—?—g\/; (20)

Now use the conditions that yield non-zero partial derivatives:

(), (@)

5 (21)
1 q
= 28g=--, /= =_-4
Bq o\ 3 o
Therefore, the transformation is canonical if
208 = —1. (22)
(b) If F1(q,Q) is a generating function, then
OF
= (8—) (23)
/¢
Thus using Eq. 20 and the condition 22,
2
Q
Fi(q,Q) = o -64°Q. (24)

Note that the generating function is not unique.
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P7.3 [6 points]

Consider the (continuous and regular) one-parameter group of canonical

transformations 1y defined as the solution to the differential equation

OV (wo; 0 0 0 ;0
w (WO ) — M |: ¢(¢l‘j)] = v ¢(WOV )7 (25)
09 N ) oy

where ¢ are some functions of w, independent of 6. Indeed, ¢* is the
inverse of the ratio of the infinitesimal change in the parameter 6 and the
corresponding change in the phase space coordinate w*:

W = wh + 50" (w). (26)

Show that a function A(w) = A(1p(wo;0)) = Ag(we) will obey the differ-

ential equation

P26l0) _ {g(wn), 6, 27)

which then leads to the power series solution

2
A(w) = Ag(wo) = A(wo)+0{Ap(wo), ¢(w0)}+% {{A46(wo), d(wo)} , dlwo) }+- - -

(28)
S57.3
9Ag(wo)  OA(Y(wo30))
00 o a0
DAW) 9
TN 00
3 OA() D6 (1) (29)
oPpr  Oym

={A(¥),o(¥)},
= {Ap(wo), d(wo)},,

where we have used Eq.25 in the 3rd step. In the last step we switched
from ¥ to wg in evaluating the Poisson Brackets and made use of the fact
that ¢ is independent of 6:

P(1h(wo; 0)) = ¢(wo)- (30)

P7.4 [10+ 4 = 14 points]
A particle of mass m moves in one dimension under a potential V() =
kx~2, where z is the Cartesian coordinate and k a constant.

(a) Find z(t) using the Poisson bracket form of the equation of motion for
the quantity y = 22 given the initial conditions x(0) = o, p(0) = 0.

(b) Show that the quantity D = xp — 2H{ is a constant of the motion.

S7.4 (a) Using Eq. 28, we can write

0= 3 04 Dat" = FOL4 (o gy (R 5502t

(31)
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where the operator H is defined as the Poisson bracket with the
Hamiltonian:

Hf={fH} (32)
for any function f(q,p,t). The subscript “0” indicates that the PB’s
are evaluated at t = 0.

Now,
2
p k
H=—+—.
2m + x? (33)

So, for y = a2

{f(),9(z)} =0,

2 e L2 oo L (0 5\ (0 o)\ _ 2up
Hy—{x,H}—2m{x ,p}—2m 8x$ 8pp = (34)

we have for the second term in the sum (since

The next term is

Tﬂyz?ﬂHﬁ)z?i(%?)
= 2 {ap, H}
= 2 (efp, H} + pla 1))
Eepebz) e
2 () ()

2 2k p?
o
For n = 3, :
H%:ﬂﬂH@%:%HH:SﬂHJﬂ:Q (36)

Hence, all higher terms are zero, and the series terminates at n = 2.
Thus the solution is a quadratic function in ¢:

2 2
322(75) = QL‘(% + —xopot + —I{o?f2
m m
2 (37)
2, 2 2 ( Py kN 2
= x5+ —xopot + — -— +t—= t.
m m \2m  x;
This is an example of how the Poisson brackets can be used to prop-
agate a function in time (or any other parameter, for that matter)
from given initial conditions. For py = 0,

2k
xQ(t) = x(Q) + 77527
o (38)
2 2k o
or, z(t) = | x5+ —5t
0



NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW7

(b) The rate of change of D with ¢ is given by

dD oD
== {D.H}+ 5. (39)

Now, using Eq. 35,

(D HY = {ap. 1y 2008, Hy = 21 ~0 = 20 = -2 (a0)
or,
dD oD
E:{D’H}JFE:O’ (41)

Hence, D is a constant of the motion.



