
NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW7

Assignment: HW7 [40 points]

Assigned: 2006/11/15
Due: 2006/11/22

Solutions

P7.1 [6 + 8 = 14 points]
A particle of mass m can move in one dimension under the influence of
two springs connected to two walls that are a distance a apart, as shown
in Fig. 7.1. The springs obey Hooke’s law, have zero unstretched lengths
and spring constants k1 and k2 respectively.

a

mk1 k2

x

Figure 7.1

(a) Let x be the length of the first spring, and b its equilibrium value.
Using the displacement from the equilibrium, q = x− b, as the gen-
eralized coordinate, find the Hamiltonian and the total energy of the
system, and examine if these quantities are conserved.

(b) Now consider the coordinate transformation

Q = q − b sin(ωt), (1)

where ω is some constant (not necessarily the natural frequency of
the system). Find the Hamiltonian and the total energy of the system
in terms of Q and its conjugate momentum P , and examine if these
quantities are conserved.

S7.1 (a) The equilibrium condition requires the forces exerted on the mass by
the two springs to cancel each other:

k1b = k2(a− b), or, b =
k2

k1 + k2
a. (2)

Thus, the potential energy of the particle is

V =
1

2
(k1x

2 + k2(a− x)2)

=
1

2
(k1(q + b)2 + k2(a− q − b)2)

=
1

2
(kq2 +

k1k2

k
a2),

(3)

where k = k1 + k2, and the kinetic energy is

T = mq̇2 (4)
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We can drop the constant term
k1k2

k
a2 from the potential energy

and write the Lagrangian as

L(q, q̇) =
1

2
mq̇2 −

1

2
kq2, (5)

and the total energy as

E =
1

2
mq̇2 +

1

2
kq2. (6)

The momentum corresponding to q is

p =
∂L

∂q̇
= mq̇

or, q̇ =
p

m
,

(7)

which gives the Hamiltonian

H(q, p) = pq̇ − L =
p2

2m
+
kq2

2
. (8)

Neither the Lagrangian nor the Hamiltonian has any explicit time
dependence. Therefore, both the total energy and the Hamiltonian
are conserved.

(b) Under the transformation,

q = Q+ b sin(ωt) (9)

and
q̇ = Q̇+ bω cos(ωt). (10)

Therefore, from Eq. 5,

L(Q, Q̇) =
m

2
(Q̇+ bω cos(ωt))2 −

k

2
(Q+ b sin(ωt))2, (11)

and

E =
m

2
(Q̇+ bω cos(ωt))2 +

k

2
(Q+ b sin(ωt))2, (12)

Thus,

P =
∂L

∂Q̇
= m(Q̇+ bω cos(ωt))

or, Q̇ =
P

m
− bω cos(ωt),

(13)

Therefore,

E =
P 2

2m
+
k

2
(Q+ b sin(ωt))2, (14)

and

H(Q,P ) = PQ̇− L

= P

(

P

m
− bω cos(ωt)

)

−
P 2

2m
+
k

2
(Q+ b sin(ωt))2

=
P 2

2m
+
k

2
(Q+ b sin(ωt))2 − bωP cos(ωt)

= E − bωP cos(ωt).

(15)
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Now,

dE

dt
=
P Ṗ

m
+k(Q+b sin(ωt))(Q̇+bω cos(ωt)) =

P

m
(Ṗ+k(Q+b sin(ωt))),

(16)
but,

Ṗ = −
∂H

∂Q
= −k(Q+ b sin(ωt)). (17)

So, the RHS of Eq. 16 vanishes, i.e.,

dE

dt
= 0. (18)

So, the energy is conserved, as expected. However, the new Hamil-
tonian depends explicitly on t, and is therefore not conserved.

P7.2 [4 + 2 = 6 points]
Let (q, p) be the phase-space coordinates of a system with one degree of
freedom.

(a) Under what conditions is the transformation

Q = α
p

q
; P = βq2 (19)

canonical (α and β are constants)?

(b) Find a suitable generating function of type 1, F1(q,Q), for the above
transformation.

S7.2 (a) First, let us find the inverse transformations q(Q,P ) and p(Q,P ):

q =

√

P

β
; p =

qQ

α
=
Q

α

√

P

β
. (20)

Now use the conditions that yield non-zero partial derivatives:
(

∂P

∂q

)

p

= −

(

∂p

∂Q

)

P

⇒ 2βq = −
1

α

√

P

β
= −

q

α
.

(21)

Therefore, the transformation is canonical if

2αβ = −1. (22)

(b) If F1(q,Q) is a generating function, then

p =

(

∂F1

∂q

)

Q

(23)

Thus using Eq. 20 and the condition 22,

F1(q,Q) =
q2Q

2α
= −βq2Q. (24)

Note that the generating function is not unique.
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P7.3 [6 points]
Consider the (continuous and regular) one-parameter group of canonical
transformations ψθ defined as the solution to the differential equation

∂ψµ(ω0; θ)

∂θ
= εµν

[

∂φ(ω)

∂ων

]

ωµ=ψµ(ω0;θ)

= εµν
∂φ(ω0; θ)

∂ψν
, (25)

where φµ are some functions of ω, independent of θ. Indeed, φµ is the
inverse of the ratio of the infinitesimal change in the parameter θ and the
corresponding change in the phase space coordinate ωµ:

ω′µ = ωµ + δθφµ(ω). (26)

Show that a function A(ω) = A(ψ(ω0; θ)) = Aθ(ω0) will obey the differ-
ential equation

∂Aθ(ω0)

∂θ
= {Aθ(ω0), φ(ω0)}ω0

, (27)

which then leads to the power series solution

A(ω) = Aθ(ω0) = A(ω0)+θ {Aθ(ω0), φ(ω0)}+
θ2

2!
{{Aθ(ω0), φ(ω0)} , φ(ω0)}+· · · .

(28)

S7.3

∂Aθ(ω0)

∂θ
=
∂A(ψ(ω0; θ))

∂θ

=
∂A(ψ)

∂ψλ
∂ψλ

∂θ

= ελµ
∂A(ψ)

∂ψλ
∂φ(ψ)

∂ψµ

= {A(ψ), φ(ψ)}ψ

= {Aθ(ω0), φ(ω0)}ω0
,

(29)

where we have used Eq.25 in the 3rd step. In the last step we switched
from ψ to ω0 in evaluating the Poisson Brackets and made use of the fact
that φ is independent of θ:

φ(ψ(ω0; θ)) = φ(ω0). (30)

P7.4 [10 + 4 = 14 points]
A particle of mass m moves in one dimension under a potential V (x) =
kx−2, where x is the Cartesian coordinate and k a constant.

(a) Find x(t) using the Poisson bracket form of the equation of motion for
the quantity y = x2 given the initial conditions x(0) = x0, p(0) = 0.

(b) Show that the quantity D = xp− 2Ht is a constant of the motion.

S7.4 (a) Using Eq. 28, we can write

f(t) =

∞
∑

n=0

1

n!
(Hnf)0t

n = f(0)+(Hf)0t+
1

2!
(H2f)0t

2+
1

3!
(H3f)0t

3+. . . ,

(31)
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where the operator H is defined as the Poisson bracket with the
Hamiltonian:

Hf ≡ {f,H} (32)

for any function f(q, p, t). The subscript “0” indicates that the PB’s
are evaluated at t = 0.

Now,

H =
p2

2m
+

k

x2
. (33)

So, for y = x2 we have for the second term in the sum (since
{f(x), g(x)} = 0,)

Hy = {x2, H} =
1

2m
{x2, p2} =

1

2m

(

∂

∂x
x2

) (

∂

∂p
p2

)

=
2xp

m
. (34)

The next term is

H2y = H(Hx2) = H

(

2xp

m

)

=
2

m
{xp,H}

=
2

m
(x{p,H} + p{x,H})

=
2

m

(

x

{

p,
k

x2

}

+ p

{

x,
p2

2m

})

=
2

m

(

−x
∂

∂x

(

k

x2

)

+
p

2m

(

∂

∂p
(p2)

))

=
2

m

(

2k

x2
+
p2

m

)

=
4

m
H.

(35)

For n = 3,

H3y = H(H2y) =
4

m
HH =

4

m
{H,H} = 0. (36)

Hence, all higher terms are zero, and the series terminates at n = 2.
Thus the solution is a quadratic function in t:

x2(t) = x2
0 +

2

m
x0p0t+

2

m
H0t

2

= x2
0 +

2

m
x0p0t+

2

m

(

p2
0

2m
+

k

x2
0

)

t2.

(37)

This is an example of how the Poisson brackets can be used to prop-
agate a function in time (or any other parameter, for that matter)
from given initial conditions. For p0 = 0,

x2(t) = x2
0 +

2k

mx2
0

t2,

or, x(t) =

(

x2
0 +

2k

mx2
0

t2
)

1

2

.

(38)
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(b) The rate of change of D with t is given by

dD

dt
= {D,H}+

∂D

∂t
. (39)

Now, using Eq. 35,

{D,H} = {xp,H} − 2t{H,H} = −2H − 0 = −2H = −
∂D

∂t
, (40)

or,
dD

dt
= {D,H}+

∂D

∂t
= 0, (41)

Hence, D is a constant of the motion.
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