Assignment: HW4 [40 points]

Assigned: 2006/10/25
Due: 2006/11/01
$\underline{\text { P4. }}[4+4=8$ points $]$
(a) Find the moment of inertia tensor I of a uniform cube of side s and mass M whose pivot is at a corner and whose sides are lined up along the axes of an orthonormal coordinate system.
(b) Find the principal axis system and the moments of inertia.

P4.2 [4 points]

The cube in Problem 1 rotates instantaneously about the edge that is lined up along the x_{1} axis. Find the angle between the angular momentum \mathbf{L} and the angular velocity $\vec{\omega}$.
$\underline{\mathbf{P 4 . 3}}$ [4 points]
Consider the symmetric dumbbell rotating in a "double cone" about its CM as shown in Fig. 4.3: two equal point masses m connected by a massless inextensible link of length 2ℓ. Find the angular momentum of the system and the torque required to maintain the motion.

Figure 4.3
$\underline{\mathbf{P 4 . 4}}$ [8 points]
Find the characteristic frequencies of the coupled circuits in Fig. 4.4.

Comment on the two modes of oscillation (Hint: only one mode is damped). Examine how the damped mode depends on the relation between R^{2} and $\frac{L}{C}$.

Figure 4.4
P4.5 [10 points]
A mass M moves horizontally along a smooth rail. A pendulum of mass m hangs from M by a massless rod of length ℓ in a uniform vertical gravitational field \mathbf{g} as shown in Fig. 4.5. Ignore all terms of order θ^{3} and higher in expansions of trigonometric functions, as well as terms of order $\theta^{2} \dot{\theta}$ and higher in the Lagrangian. Find the eigenfrequencies and describe the normal modes.

Figure 4.5
$\underline{\mathbf{P 4 . 6}}$ [6 points]
Three oscillators of equal mass m moving in one dimension are coupled such that the potential energy of the system is given by

$$
\begin{equation*}
U=\frac{1}{2}\left[\kappa_{1}\left(x_{1}^{2}+x_{3}^{2}\right)+\kappa_{2} x_{2}^{2}+\kappa_{3}\left(x_{1} x_{2}+x_{2} x_{3}\right)\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{3}=\sqrt{2 \kappa_{1} \kappa_{2}} . \tag{2}
\end{equation*}
$$

Find the eigenfrequencies by solving the secular equation. What is the physical interpretation fo the zero-frequency mode?

