Assignment: HW1 [40 points]

Assigned: 2006/09/20
Due: 2006/09/27

P1.1 [10 points]
Show that the Galilei transformations $g(\mathbf{R}(\psi, \hat{\mathbf{n}}), \mathbf{w}, \mathbf{a}, s)$,

$$
\begin{equation*}
\binom{\mathbf{r}}{t} \xrightarrow{g}\binom{\mathbf{r}^{\prime}=\mathbf{R r}+\mathbf{w} t+\mathbf{a}}{t^{\prime}=\lambda t+s}, \tag{1}
\end{equation*}
$$

with $\operatorname{det} \mathbf{R}=+1, \lambda=+1$, form a group. ${ }^{1}$
$\underline{\text { P1.2 }}[2+4+4=10$ points $]$
A particle of mass m moves without friction along a symmetrical planar curve $s=s(\theta)$ whose axis of symmetry is parallel to a uniform gravitational field of acceleration $\mathbf{g} . s$ is the displacement in arc length from the center, and θ in angle from the horizontal, as shown in Fig. 1.2.

Figure 1.2
If the particle starts from rest at $s=s_{0}$ and executes simple harmonic oscillations with frequency ω,
(a) Derive the expression for $s(t)$.
(b) Relate $s(t)$ to $\theta(t)$ and comment on the resultant motion.
(c) From the explicit solution, calculate the force of constraint and the total force acting on the particle.
$\underline{\text { P1.3 }}[5+5=10$ points]
Consider the equations (no sum over α)

$$
\begin{equation*}
\ddot{x}_{\alpha}+\omega_{\alpha}^{2} x_{\alpha}=0, \quad \alpha=1,2, \ldots, n \tag{2}
\end{equation*}
$$

where $\omega_{\alpha}^{2}=\frac{k_{\alpha}}{m}, k_{\alpha} \neq k_{\beta}$ for $\alpha \neq \beta$. In the absence of constraints this system can be thought of either as n uncoupled 1-D oscillators or as an anisotropic oscillator with n degrees of freedom, each with its own frequency ω_{α}. Take the second view.

[^0](a) Find the constraint force $\mathbf{C}(x, \dot{x})$ that will keep this oscillator on the sphere \mathbf{S}^{n-1} of radius 1 , in the Euclidean space \mathbb{E}^{n}, whose equation is $|\mathbf{x}|^{2} \equiv \sum_{\alpha=1}^{n} x_{\alpha}^{2}=1$. Here \mathbf{x} is the vector with components x_{α} in \mathbb{E}^{n}. Assume that \mathbf{C} is normal to \mathbf{S}^{n-1} (i.e., parallel to \mathbf{x}). Write down the equations of motion for the constrained oscillator.
(b) Show that the n functions
\[

$$
\begin{equation*}
F_{\alpha}=x_{\alpha}^{2}+\sum_{\beta \neq \alpha} \frac{\left(x_{\alpha} \dot{x}_{\beta}-\dot{x}_{\alpha} x_{\beta}\right)^{2}}{\omega_{\alpha}^{2}-\omega_{\beta}^{2}} \tag{3}
\end{equation*}
$$

\]

are constants of the motion.
$\underline{\text { P1.4 }}[3+4+3=10$ points]
A bead of mass m slides without friction in a uniform gravitational field of acceleration \mathbf{g} on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity Ω about its vertical diameter. Take the center of the hoop as the pole (origin) of a spherical polar coordinate system in which $\mathbf{r}=\{r, \theta, \phi\}$ represents the radius vector of the bead, with $\theta=0$ along the direction of gravity.
(a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
(b) Find how the equilibrium values of θ depend on Ω. Which are stable and which are unstable?
(c) Find the frequencies of small vibrations about the stable equilibrium positions (hint: use the first term in a Taylor series expansion). What happens when $\Omega=\sqrt{\frac{g}{R}}$?

[^0]: ${ }^{1}$ This is the proper, orthochronous Galilei group $G_{+}^{\dagger 4}$.

