Assignment: HW1 [40 points]

Assigned: 2006/09/20 Due: 2006/09/27

<u>**P1.1**</u> [10 points]

Show that the Galilei transformations $q(\mathbf{R}(\psi, \hat{\mathbf{n}}), \mathbf{w}, \mathbf{a}, s)$,

$$\begin{pmatrix} \mathbf{r} \\ t \end{pmatrix} \xrightarrow{g} \begin{pmatrix} \mathbf{r}' = \mathbf{R}\mathbf{r} + \mathbf{w}t + \mathbf{a} \\ t' = \lambda t + s \end{pmatrix}, \tag{1}$$

with det $\mathbf{R} = +1$, $\lambda = +1$, form a group.¹

<u>P1.2</u> [2+4+4=10 points]

A particle of mass m moves without friction along a symmetrical planar curve $s = s(\theta)$ whose axis of symmetry is parallel to a uniform gravitational field of acceleration **g**. s is the displacement in arc length from the center, and θ in angle from the horizontal, as shown in Fig. 1.2.

Figure 1.2

If the particle starts from rest at $s = s_0$ and executes simple harmonic oscillations with frequency ω ,

- (a) Derive the expression for s(t).
- (b) Relate s(t) to $\theta(t)$ and comment on the resultant motion.
- (c) From the explicit solution, calculate the force of constraint and the total force acting on the particle.

<u>**P1.3**</u> [5+5=10 points]

Consider the equations (no sum over α)

$$\ddot{x}_{\alpha} + \omega_{\alpha}^2 x_{\alpha} = 0, \quad \alpha = 1, 2, \dots, n,$$
(2)

where $\omega_{\alpha}^2 = \frac{k_{\alpha}}{m}$, $k_{\alpha} \neq k_{\beta}$ for $\alpha \neq \beta$. In the absence of constraints this system can be thought of either as *n* uncoupled 1-D oscillators or as an anisotropic oscillator with *n* degrees of freedom, each with its own frequency ω_{α} . Take the second view.

¹This is the proper, orthochronous Galilei group $G_{\perp}^{\uparrow 4}$.

- (a) Find the constraint force $\mathbf{C}(x, \dot{x})$ that will keep this oscillator on the sphere \mathbf{S}^{n-1} of radius 1, in the Euclidean space \mathbb{E}^n , whose equation is $|\mathbf{x}|^2 \equiv \sum_{\alpha=1}^n x_{\alpha}^2 = 1$. Here \mathbf{x} is the vector with components x_{α} in \mathbb{E}^n . Assume that \mathbf{C} is normal to \mathbf{S}^{n-1} (i.e., parallel to \mathbf{x}). Write down the equations of motion for the constrained oscillator.
- (b) Show that the *n* functions

$$F_{\alpha} = x_{\alpha}^2 + \sum_{\beta \neq \alpha} \frac{(x_{\alpha} \dot{x}_{\beta} - \dot{x}_{\alpha} x_{\beta})^2}{\omega_{\alpha}^2 - \omega_{\beta}^2}$$
(3)

are constants of the motion.

<u>**P1.4**</u> [3+4+3=10 points]

A bead of mass m slides without friction in a uniform gravitational field of acceleration \mathbf{g} on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity Ω about its vertical diameter. Take the center of the hoop as the pole (origin) of a spherical polar coordinate system in which $\mathbf{r} = \{r, \theta, \phi\}$ represents the radius vector of the bead, with $\theta = 0$ along the direction of gravity.

- (a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
- (b) Find how the equilibrium values of θ depend on Ω . Which are stable and which are unstable?
- (c) Find the frequencies of small vibrations about the stable equilibrium positions (hint: use the first term in a Taylor series expansion). What happens when $\Omega = \sqrt{\frac{g}{R}}$?