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Motivation

• FullSim is cpu intensive (mostly due to shower development in

calorimeters). Need faster FastCal for calorimeters.

• Use FastCal in studies that can tolerate drawbacks.

• FastCal can provide large datasets quickly, as detector design

develops.

• FastCal should work for all detector designs under consideration:

L, SD etc.

• FastCal in the JAS environment.
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FastCal Overview

• FastCal specifics:

? Charged and neutral particle propagation.

? Randomized hadronic shower origin.

? Bock parameterization for hadronic shower energy deposition.

? Smear ECAL and HCAL energy.

• Cluster and jet energy comparison with that of FullSim.

• Brief description of an application.

• To Do.

• Events: e+e−→ ZZ (1,200). Detector: ldmar01.
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FastCal Particle Propagation

• Final state particle path are obtained analytically.

ZZ → e−e+, e−e+

HAD Barrel Intersection
charged particles -- Event 95

FullSim (LCDWired)
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Calorimeter Response to Final State Particles

• e−, e+ and γ energy contained in ECAL.

• Require hadronic energy deposition in ECAL

• Initiate hadronic showers in ECAL.

• Integrate Bock Parameterization (empirical beam data fit).

[Bock et al., NIM 186 (1981) 533-539]∫ x

0

dE = E0 (wP (a, bt) + (1− w)P (c, du)) ,

Here, t = x/X0, u = x/λ, a = 0.6165+0.3183 logE0, b = 0.2198,

c = a, d = 0.9099− 0.0237 logE0 and w = 0.4634.

Saurav Pathak, Univ of Pennsylvania Santa Cruz LC Retreat



6

Hadrons

ECAL ECAL

SHOWERSHOWER

HADRON

ORIGIN

PATH

FRONT

HADRONIC  SHOWER

BACK

HCAL



6

Hadrons

ECAL ECAL

SHOWERSHOWER

HADRON

ORIGIN

PATH

FRONT

HADRONIC  SHOWER

BACK

HCAL

• e−s/λ distribution of shower

origin, from the ECAL inner

surface.



6

Hadrons

ECAL ECAL

SHOWERSHOWER

HADRON

ORIGIN

PATH

FRONT

HADRONIC  SHOWER

BACK

HCAL

• e−s/λ distribution of shower

origin, from the ECAL inner

surface.

• Bock parameterization ener-

gy integration performed

from shower origin to back

of ECAL.



6

Hadrons

ECAL ECAL

SHOWERSHOWER

HADRON

ORIGIN

PATH

FRONT

HADRONIC  SHOWER

BACK

HCAL

• e−s/λ distribution of shower

origin, from the ECAL inner

surface.

• Bock parameterization ener-

gy integration performed

from shower origin to back

of ECAL.

• Energy smeared according to

calorimeter energy resolution

and deposited at ECAL.



6

Hadrons

ECAL ECAL

SHOWERSHOWER

HADRON

ORIGIN

PATH

FRONT

HADRONIC  SHOWER

BACK

HCAL

• e−s/λ distribution of shower

origin, from the ECAL inner

surface.

• Bock parameterization ener-

gy integration performed

from shower origin to back

of ECAL.

• Energy smeared according to

calorimeter energy resolution

and deposited at ECAL.

• Rest of the energy smeared

and deposited in the HCAL.
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ECAL Energy Deposition (Events vs E/
√
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HCAL Energy Deposition (Events vs E/
√
s)
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Total Energy Deposition (Events vs E/
√
s)
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FastCal Cluster Energy

• Clusters –

FastCal: use energy deposits in Calorimeters.

FullSim: use ClusterCheater (JAS)
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FastCal Jet Energy

• Jet Finding: use JadeEJetFinder for both FastCal and FullSim

• Consider jets with more than 1 particle.
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Jet Finding II
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An Application
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Z Reconstruction in Hadronic Final States

Hadronic
Decay

Z

Z

• The all hadronic decay events

constitute ∼50% of all ZZ

decays.

• Use neural networks to recon-

struct Z – robust. FullSim

details not required.

• Require large datasets for

training – more than 50,000

events.

• FastCal suited for use.

Saurav Pathak, Univ of Pennsylvania Santa Cruz LC Retreat
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To Do

• Muon ionization in ECAL and HCAL.

• Electron and photon energy leakage into HCAL.

• Energy leakage out the back of HCAL.

• Lateral Shower smearing.

Saurav Pathak, Univ of Pennsylvania Santa Cruz LC Retreat
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FastCal Results

• Bock parametrization results in qualitative agreement between

FullSim and FastCal in ECAL/HCAL energy deposition.

• Jet Energy distributions match well especially in the mid and high

energy ranges.

• ∼ 0.5 difference in number of jets in FullSim and FastCal, without

jet energy cuts.

• ∼ 0.07 seconds per event in FastCal (Pentium II, 512MHz)

∼ 5, 000 times faster than FullSim.

• Code available for download.

Saurav Pathak, Univ of Pennsylvania Santa Cruz LC Retreat
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Final Slide

• Download:

? URL: http://nscp.upenn.edu/∼saurav/nlc/fcal
? contact: saurav@nscp.upenn.edu

• Acknowledgements:

? Kevin Sterner, Pavlos Protopapas and Robert Hollebeek for

guidance and advice.

? Gary Bower for help at crucial stages.
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Low Energy Clusters in FullSim
?

• Too many very low energy clusters in FullSim
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