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Primary ECAL Design Requirements

• Excellent separation of γ’s from charged particles

Efficiency > 95% for energy flow

• Good reconstruction of π±, detection of neutral hadrons

• Reasonable EM energy resolution (< 15%/
√

E)

• Reconstruct τ ’s and measure polarization (separate π, ρ, a1, e’s)

• Reconstruct Bhabhas and deconvolve luminosity spectra

Position resolution ∼ 100µm, bias ∼ 25µm in endcap
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Secondary ECAL Design Requirements

• Excellent electron identification in jets (tag and b/c quarks)

• Partial reconstruction of b/c hadrons in jets

• Good γ impact resolution for long lived SUSY neutrals

∼ 1 cm

• Good background immunity

– Bunchlet identification

– High granularity
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SiW Design Consideration

• Transverse shower size scales

with Molière radius

(9mm in pure W,

16mm in pure Pb)

⇒ Minimize gaps between layers

of absorber

⇒ Use a high purity W alloy

• Sample between 1/2 and 2/3 of

X0 (1.75mm to 2.5mm of W)

• Allow for detector segmentation

at a fraction of the Molière ra-

dius

⇒ Use ∼ 5mm pads

OPAL - 45 GeV Electron Lateral Shower Profiles
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Silicon Concept

• Readout each wafer with a

single chip

• Bump bond chip to wafer

• To first order cost indepen-

dent of pixels /wafer

• Hexagonal shape makes op-

timal use of Si wafer

• Channel count limited by

power consumption and area

of front end chip

• May want different pad lay-

out in forward region

Front End 
Chip 
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Silicon Design Details

• DC coupled detectors

• Two metal layers

• Keep Si design as simple as

possible to reduce cost

• Cross talk looks small with

current electronics design
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Electronics Design

• Chip area driven by feedback
capacitor on charge integrator
and 3V supply.
Need 2000 MIP (8 pC) dynamic
range for 500 GeV electrons.
⇒ 10pF feedback capacitor
needed

• New design samples integrated
(τ = 200ns) signal after 1µs for
each bunch train
Lowers cross talk, little gain vari-
ation with bunch-let number

• Timing at the 10ns level should be
possible

• Current in input transistor pulsed
duty cycle < 10−3 0.1mW/ch

• Currently estimating chip area and
power needed for digital section
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Si Prototypes

• Design completed
Provisional grid spacing for bump-bonding

6.20 +/− 0.04

from pixels to a typical bump pad row
Each trace 0.006 wide

to pixels

R. Frey

Unit: mm
Traces to bump pads, typical
Detail B
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to pixels

Bump Pad Array, v2.1

8/28/03

16 traces (maximum)
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Si Prototype properties – leakage current and noise

• Radiation damage to detectors is probably dominated by neutrons,

∼ 10× 1010/cm2

⇒ < 10nA /pixel leakage current

• Expect typical leakage current at start of life < 1nA/pixel

• Noise from leakage current at end-of-life for 1µs sampling time (can

be adjusted ) and DC coupling scheme is < 350 electrons
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• Largest source of electronics noise will be front-end input transistor,

noise scales as
Cin√
τI1/4

∝
Cin√

τpower1/4

• Present design has noise:

∼ 20− 30e/pf

For most channels the value of Cinput is dominated by stray capacitance

of the trace connecting the pixels to the electronics:

Cinput ∼ 5.7pF(pixel) + 12pF(trace) + 10pF(amp) ∼ 30pF

−→ ∼ 1000 electrons noise (c.f. 24,000 from MIP)

• Analog power consumption will probably be driven by timing require-

ments (under investigation)
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Fitting it all together

• Cartoon of possible barrel

calorimeter configuration

• Assume heat flows along

tungsten and/or copper heat

sink to cooling water (green)

• Longest path for heat flow

< 1.4m

Inner Tracker
1.25m

ECAL
Cooling
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Layout of Individual calorimeter layers:

Layer Assembly 
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Critical parameter: minimum space between tungsten layers.

Config. Radiation Molière
length Radius

100% W 3.5mm 9mm
92.5% W 3.9mm 10mm
+1mm gap 5.5mm 14mm
+1mmCu 6.4mm 17mm
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Heat flow

Back of the envelope calculation

of change in temperature:

• Thermal Conductivity of W

alloy 120W/(K-m)

• Thermal Conductivity of Cu

400W/(K-m)

Need to reduce heat to below

100mW/wafer.

Physical model test in progress
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Prototype Tungsten Pieces

• OPAL tungsten ground to size

(almost more expensive than

tungsten itself!)

• Prototype rolled pieces

(92.5%W) look fine (some

grinding still needed)

• Quality better than OPAL

• 1m long pieces possible
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Summary of Granularity – Most important figure of merit

• With 92.5% W and 1 mm gap we can have a Molière radius of

∼ 14 mm

which has an angular size of 11 mrad at 1.25 m

⇒ provided we can keep the power down to 40 mW wafer

• This will be challenging, but may be possible

What about energy resolution ⇒
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Jet energy resolution will suffer if we give up too much sampling
(Graham Wilson’s plot):

Assumes σpt/p2
t = 5× 10−5, HCAL res 50%/

√
E ⊕ 4%
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Geant 4 simulation of energy resolution from Graham Wilson

• 1GeV photons

• 0.1 µm range cuts

• 42 and 75 layers of W

• Si apparently benefits

from subMIP energy de-

posits – can we see this

in a real detector?
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Toy Monte Carlo Studies of Timing Resolution for 30 Samples

Assumptions – wild guesses – (waiting for real electronics model):

• Timing circuit and charge amplifier have the same integration time of 200 ns.

• Input FET has gm = 2mS

• Excess noise is equal to FET noise

• Includes reasonable distribution of capacitances from second metal layers

• Threshold is set at 8000 electrons (Typical noise ∼ 1000 electrons)

• 5% gitter channel-to-channel, 1% common mode gitter in thresholds

• Charge granularity of 0.061*1MIP

• Channel-to-channel leakage current variations perfectly corrected
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Sample Timing Results
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Practice with 6x6 1cm2 cell detectors:
Probe station IR laser
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Si-W status

• Design of first silicon detectors complete

⇒ Prototypes will arrive in early ’04

• Electronics rough draft complete

⇒ Expect to be ready for submission in early ’04

• Mechanical conceptual design started

⇒ ∼ 1mm gap between layers without a copper heat

sink may be possible

⇒ Gap size depends crucially on power consumption
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Si-W Near Term Plans

• Produce prototype electronics – early next year

• Test bump bounding electronics to detectors in ’04

• Ready for Test Beam in ’05

• Confirm thermal model and explore best coupling

method of chips to absorber

• Simulation job list:

– Optimize sampling for energy resolution

– Compare GEANT 4 /EGS and data on Eres versus

silicon thickness

– Optimize pixel layout

– Would more granularity help?

– How sensitive is energy flow to Molière radius?
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